Mapping with limited sensing

For a mobile robot to interact with its environment in meaningful ways, it must possess a model of the environment, i.e., a map. In most cases it is infeasible for an accurate map to be constructed by hand and provided to the robot prior to deployment. Therefore, the robot must construct a map online. Most mapping algorithms assume the availability of frequent, high fidelity feedback from the environment acquired using sensors such as scanning laser rangefinders. Such sensors provide dense, accurate, and long-range data at great expense: they typically cost thousands of (US) dollars, consume significant power and space resources, and require the use of powerful computers for data processing. These sensors are therefore unsuitable for deployment in many applications, e.g., consumer-level robots, disposable robots for search and rescue or hazardous material detection, or mobile sensor networks. The proposed thesis will develop and demonstrate algorithms for mapping with more limited sensors such as infrared rangefinder arrays, which are inexpensive, low-power, and small. The tradeoff of using such sensors is that they give only low-resolution, short-range feedback about the environment and thus are difficult to use for mapping. The first challenge addressed by the proposed thesis is simply to adapt current mapping techniques to the case of limited sensing. Next, uncertainty in the robot’s state and the map can be very large for robots with restricted sensing capabilities; it is therefore also necessary to develop techniques to manage and reduce uncertainty. The proposed thesis will accomplish this by incorporating prior knowledge in the mapping process, by improving the representation of uncertainty, by integrating exploration strategies into mapping, and by utilizing both structural and geometrical information to build maps. Finally, all of the mapping algorithms developed in the thesis will be validated experimentally through simulation, tests on benchmark datasets, and implementation and deployment on real robots.

[1]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[2]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[3]  Ruzena Bajcsy,et al.  The Sensor Selection Problem for Bounded Uncertainty Sensing Models , 2005, IEEE Transactions on Automation Science and Engineering.

[4]  Kurt Konolige,et al.  A practical, decision-theoretic approach to multi-robot mapping and exploration , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Geovany de Araújo Borges,et al.  Line Extraction in 2D Range Images for Mobile Robotics , 2004, J. Intell. Robotic Syst..

[6]  Steven M. LaValle,et al.  Optimal navigation and object finding without geometric maps or localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[8]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[9]  A. Saffiotti,et al.  Building Globally Consistent Gridmaps from Topologies , 2000 .

[10]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[11]  Ralph L. Hollis,et al.  Distributed coverage of rectilinear environments , 2000 .

[12]  Wesley H. Huang,et al.  Complete Topological Mapping with Sparse Sensing , 2005 .

[13]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[14]  D. B. Davis,et al.  Intel Corp. , 1993 .

[15]  H. Christensen,et al.  Navigation in realistic environments , 2001 .

[16]  Jason M. O'Kane,et al.  Localization With Limited Sensing , 2007, IEEE Transactions on Robotics.

[17]  Pradeep K. Khosla,et al.  Efficient mapping through exploitation of spatial dependencies , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Tim Bailey Constrained initialisation for bearing-only SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[20]  Keith L. Doty,et al.  Autonomous Agent Map Construction in Unknown Enclosed Environments , 1994 .

[21]  Simon Lacroix,et al.  A practical 3D bearing-only SLAM algorithm , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  E. Olson,et al.  Robust Range-Only Beacon Localization , 2004, IEEE Journal of Oceanic Engineering.

[23]  Nando de Freitas,et al.  Toward Practical N2 Monte Carlo: the Marginal Particle Filter , 2005, UAI.

[24]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[25]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[26]  Sanjiv Singh,et al.  Preliminary results in range-only localization and mapping , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  Hugh F. Durrant-Whyte Uncertain geometry in robotics , 1988, IEEE J. Robotics Autom..

[28]  Kurt Konolige,et al.  Map merging for distributed robot navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[29]  Henrik I. Christensen,et al.  Triangulation-based fusion of sonar data with application in robot pose tracking , 2000, IEEE Trans. Robotics Autom..

[30]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[31]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: closing the loop with multi-hypotheses tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[32]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[33]  Emanuele Menegatti,et al.  Bayesian inference in the space of topological maps , 2006, IEEE Transactions on Robotics.

[34]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[35]  Timothy S. Bailey,et al.  Mobile Robot Localisation and Mapping in Extensive Outdoor Environments , 2002 .

[36]  D. Kurth Range-Only Robot Localization and SLAM with Radio , 2004 .

[37]  Henrik I. Christensen,et al.  Graphical SLAM - a self-correcting map , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[38]  Ronald C. Arkin,et al.  Intelligent Robotic Systems , 1995, IEEE Expert.

[39]  Michel Devy,et al.  Undelayed initialization in bearing only SLAM , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Hobart R. Everett,et al.  Where am I?" sensors and methods for mobile robot positioning , 1996 .

[41]  Jason M. O'Kane,et al.  On Comparing the Power of Mobile Robots , 2006, Robotics: Science and Systems.

[42]  Riccardo Poli,et al.  Robust mobile robot localisation from sparse and noisy proximity readings using Hough transform and probability grids , 2001, Robotics Auton. Syst..

[43]  Robin R. Murphy,et al.  Dempster-Shafer theory for sensor fusion in autonomous mobile robots , 1998, IEEE Trans. Robotics Autom..

[44]  Howie Choset,et al.  Incremental Construction of the Generalized Voronoi Diagram , the Generalized Voronoi Graph , and the Hierarchical Generalized Voronoi Graph , 1999 .

[45]  Wolfram Burgard,et al.  Recovering Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM After Actively Closing Loops , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[46]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[47]  Nicholas Roy,et al.  Using reinforcement learning to improve exploration trajectories for error minimization , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[48]  Wesley H. Huang,et al.  Inferring and Enforcing Relative Constraints in SLAM , 2006, WAFR.

[49]  Kurt Konolige,et al.  Improved Occupancy Grids for Map Building , 1997, Auton. Robots.

[50]  Sebastian Thrun,et al.  Coastal Navigation with Mobile Robots , 1999, NIPS.

[51]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[52]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[53]  P. Newman,et al.  SLAM in large-scale cyclic environments using the Atlas framework , 2003 .

[54]  Peter I. Corke,et al.  Further Results with Localization and Mapping Using Range from Radio , 2005, FSR.

[55]  Nicholas Roy,et al.  SLAM using Incremental Probabilistic PCA and Dimensionality Reduction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[56]  Vijay Kumar,et al.  Extensive Representations and Algorithms for Nonlinear Filtering and Estimation , 2006, WAFR.

[57]  John J. Leonard,et al.  A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization , 2000 .

[58]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[59]  Howie Choset,et al.  Complete sensor-based coverage with extended-range detectors: a hierarchical decomposition in terms of critical points and Voronoi diagrams , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[60]  Roland Siegwart,et al.  Multi-resolution SLAM for Real World Navigation , 2003, ISRR.

[61]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[62]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[63]  Sebastian Thrun,et al.  FastSLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem with Unknown Data , 2004 .

[64]  L. P. Kaelbling,et al.  Learning Geometrically-Constrained Hidden Markov Models for Robot Navigation: Bridging the Topological-Geometrical Gap , 2011, J. Artif. Intell. Res..

[65]  Christiaan J. J. Paredis,et al.  Heterogeneous Teams of Modular Robots for Mapping and Exploration , 2000, Auton. Robots.

[66]  Gaurav S. Sukhatme,et al.  Landmark-based Matching Algorithm for Cooperative Mapping by Autonomous Robots , 2000, DARS.

[67]  Benjamin Kuipers,et al.  Modeling Spatial Knowledge , 1978, IJCAI.

[68]  Wesley H. Huang,et al.  Fixed-lag Sampling Strategies for Particle Filtering SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[69]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[70]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[71]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[72]  Wesley H. Huang,et al.  Topological Map Merging , 2005, Int. J. Robotics Res..

[73]  Kristopher R. Beevers Sampling Strategies for Particle Filtering SLAM , 2006 .

[74]  Favio R. Masson,et al.  Navigation and Mapping in Large Unstructured Environments , 2004, Int. J. Robotics Res..

[75]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[76]  Hugh F. Durrant-Whyte,et al.  New approach to map building using relative position estimates , 1997, Defense, Security, and Sensing.

[77]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[78]  Reid G. Simmons,et al.  Unsupervised learning of probabilistic models for robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[79]  Tom Duckett,et al.  Dynamic Maps for Long-Term Operation of Mobile Service Robots , 2005, Robotics: Science and Systems.

[80]  Wesley H. Huang,et al.  Topological Mapping with Sensing-Limited Robots , 2004, WAFR.

[81]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[82]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[83]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for topological mapping , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[84]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[85]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[86]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[87]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[88]  Wesley H. Huang,et al.  Loop Closing in Topological Maps , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[89]  S. Chib Calculating posterior distributions and modal estimates in Markov mixture models , 1996 .

[90]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[91]  F. Matia,et al.  Integrating Segments and Edges in Feature-based SLAM , 2003 .

[92]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[93]  Rafael Murrieta-Cid,et al.  Planning exploration strategies for simultaneous localization and mapping , 2006, Robotics Auton. Syst..

[94]  Xiaoping Yun,et al.  Mobile robot localization using the Hough transform and neural networks , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[95]  D. Simon,et al.  Kalman filtering with state equality constraints , 2002 .

[96]  Wolfram Burgard,et al.  Probabilistic mapping of an environment by a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[97]  Wesley H. Huang,et al.  SLAM with sparse sensing , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[98]  Hugh F. Durrant-Whyte,et al.  An evidential approach to map-building for autonomous vehicles , 1998, IEEE Trans. Robotics Autom..

[99]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[100]  Wesley H. Huang,et al.  How sensing capabilities influence map quality , 2006 .

[101]  Ramón Galán,et al.  Consistency improvement for SLAM - EKF for indoor environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[102]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[103]  John J. Leonard,et al.  Cooperative concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[104]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[105]  Donald L. Simon,et al.  Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering , 2005 .

[106]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[107]  Uwe D. Hanebeck,et al.  Localization of a mobile robot using relative bearing measurements , 2004, IEEE Transactions on Robotics and Automation.

[108]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[109]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[110]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[111]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[112]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[113]  Benjamin Kuipers,et al.  Using the topological skeleton for scalable global metrical map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[114]  John J. Leonard,et al.  Passive Mobile Robot Localization within a Fixed Beacon Field , 2006, WAFR.

[115]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[116]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[117]  Sebastian Thrun,et al.  Learning Occupancy Grid Maps with Forward Sensor Models , 2003, Auton. Robots.

[118]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[119]  Martial Hebert,et al.  Invariant filtering for simultaneous localization and mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[120]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[121]  G. Swaminathan Robot Motion Planning , 2006 .

[122]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[123]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[124]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[125]  Hugh F. Durrant-Whyte,et al.  Model-based multi-sensor data fusion , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[126]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[127]  Benjamin Kuipers,et al.  Loop-closing and planarity in topological map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[128]  Kristopher R. Beevers TOPOLOGICAL MAPPING AND MAP MERGING WITH SENSING-LIMITED ROBOTS , 2004 .

[129]  Maria L. Gini,et al.  Using visual features to build topological maps of indoor environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[130]  Michael Bosse,et al.  Mapping Partially Observable Features from Multiple Uncertain Vantage Points , 2002, Int. J. Robotics Res..

[131]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[132]  Stergios I. Roumeliotis,et al.  Weighted line fitting algorithms for mobile robot map building and efficient data representation , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[133]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[134]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[135]  Martial Hebert,et al.  Experimental Comparison of Techniques for Localization and Mapping Using a Bearing-Only Sensor , 2000, ISER.

[136]  Michael Jenkin,et al.  Topo-logical exploration with multiple robots , 1998 .

[137]  Johan Forsberg,et al.  Mobile robot localization: integrating measurements from a time-of-flight laser , 1996, IEEE Trans. Ind. Electron..

[138]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.