Inverse-Dynamics MPC via Nullspace Resolution

Optimal control (OC) using inverse dynamics provides numerical benefits, such as coarse optimization, cheaper computation of derivatives, and a high convergence rate. However, to take advantage of these benefits in model predictive control (MPC) for legged robots, it is crucial to handle efficiently its large number of equality constraints. To accomplish this, we first propose a novel approach to handle equality constraints based on nullspace parameterization. Our approach balances optimality, and both dynamics and equality-constraint feasibility appropriately, which increases the basin of attraction to high-quality local minima. To do so, we modify our feasibility-driven search by incorporating a merit function. Furthermore, we introduce a condensed formulation of inverse dynamics that considers arbitrary actuator models. We also propose a novel MPC based on inverse dynamics within a perceptive locomotion framework. Finally, we present a theoretical comparison of OC with forward and inverse dynamics and evaluate both numerically. Our approach enables the first application of inverse-dynamics MPC on hardware, resulting in the state-of-the-art dynamic climbing on the ANYmal robot. We benchmark it over a wide range of robotics problems and generate agile and complex maneuvers. We show the computational reduction of our nullspace resolution and condensed formulation (up to ${47.3}\boldsymbol{\%}$). We provide evidence of the benefits of our approach by solving coarse optimization problems with a high convergence rate (up to 10 Hz of discretization). Our algorithm is publicly available inside Crocoddyl.

[1]  N. Mansard,et al.  Real-time Footstep Planning and Control of the Solo Quadruped Robot in 3D Environments , 2022, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  D. Pucci,et al.  Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion , 2022, IEEE Transactions on Robotics.

[3]  N. Mansard,et al.  Implicit Differential Dynamic Programming , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[4]  S. Vijayakumar,et al.  Agile Maneuvers in Legged Robots: a Predictive Control Approach , 2022, ArXiv.

[5]  T. Ohtsuka,et al.  Whole-body model predictive control with rigid contacts via online switching time optimization , 2022, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Nicolas Mansard,et al.  Comparison of predictive controllers for locomotion and balance recovery of quadruped robots , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Sarah El Kazdadi,et al.  Equality Constrained Differential Dynamic Programming , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[8]  T. Ohtsuka,et al.  Efficient solution method based on inverse dynamics for optimal control problems of rigid body systems , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[9]  A. Bemporad,et al.  Model Predictive Control with Environment Adaptation for Legged Locomotion , 2021, IEEE Access.

[10]  Olivier Stasse,et al.  Whole Body Model Predictive Control with a Memory of Motion: Experiments on a Torque-Controlled Talos , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Aaron D. Ames,et al.  Multi-Layered Safety for Legged Robots via Control Barrier Functions and Model Predictive Control , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Vladimir Ivan,et al.  Inverse Dynamics vs. Forward Dynamics in Direct Transcription Formulations for Trajectory Optimization , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[13]  S. Vijayakumar,et al.  A feasibility-driven approach to control-limited DDP , 2020, Autonomous Robots.

[14]  Gerardo Bledt,et al.  Extracting Legged Locomotion Heuristics with Regularized Predictive Control , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Chris Manzie,et al.  Interior Point Differential Dynamic Programming , 2020, IEEE Transactions on Control Systems Technology.

[16]  Darwin G. Caldwell,et al.  Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control , 2020, IEEE Transactions on Robotics.

[17]  Zachary Manchester,et al.  ALTRO: A Fast Solver for Constrained Trajectory Optimization , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Patrick M. Wensing,et al.  MPC-based Controller with Terrain Insight for Dynamic Legged Locomotion , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Nicolas Mansard,et al.  SL1M: Sparse L1-norm Minimization for contact planning on uneven terrain , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[20]  S. Vijayakumar,et al.  Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Ruben Grandia,et al.  Feedback MPC for Torque-Controlled Legged Robots , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Olivier Stasse,et al.  The Pinocchio C++ library : A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives , 2019, 2019 IEEE/SICE International Symposium on System Integration (SII).

[23]  Carlos Mastalli,et al.  Passive Whole-Body Control for Quadruped Robots: Experimental Validation Over Challenging Terrain , 2018, IEEE Robotics and Automation Letters.

[24]  Nicolas Mansard,et al.  Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[25]  Sangbae Kim,et al.  Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[27]  Nicolas Mansard,et al.  Analytical Derivatives of Rigid Body Dynamics Algorithms , 2018, Robotics: Science and Systems.

[28]  Peter Fankhauser,et al.  Robust Rough-Terrain Locomotion with a Quadrupedal Robot , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Marco Hutter,et al.  Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds , 2017, IEEE Robotics and Automation Letters.

[30]  Carlos Mastalli,et al.  Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Locomotion via Mixed-Integer Convex Optimization , 2017, IEEE Robotics and Automation Letters.

[31]  Jonas Buchli,et al.  A projection approach to equality constrained iterative linear quadratic optimal control , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[32]  Edo Jelavic,et al.  Real-time motion planning of legged robots: A model predictive control approach , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[33]  Darwin G. Caldwell,et al.  Trajectory and foothold optimization using low-dimensional models for rough terrain locomotion , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Peter Fankhauser,et al.  Perception-less terrain adaptation through whole body control and hierarchical optimization , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[35]  Peter Fankhauser,et al.  ANYmal - a highly mobile and dynamic quadrupedal robot , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Jonas Buchli,et al.  An efficient optimal planning and control framework for quadrupedal locomotion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Alexander Herzog,et al.  Structured contact force optimization for kino-dynamic motion generation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[38]  Darwin G. Caldwell,et al.  Hierarchical planning of dynamic movements without scheduled contact sequences , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Olivier Stasse,et al.  Whole-body model-predictive control applied to the HRP-2 humanoid , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[40]  Russ Tedrake,et al.  Whole-body motion planning with centroidal dynamics and full kinematics , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[41]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[42]  R. Siegwart,et al.  ROBOT-CENTRIC ELEVATION MAPPING WITH UNCERTAINTY ESTIMATES , 2014 .

[43]  Emanuel Todorov,et al.  Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in MuJoCo , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Russ Tedrake,et al.  A direct method for trajectory optimization of rigid bodies through contact , 2014, Int. J. Robotics Res..

[45]  John Bagterp Jørgensen,et al.  Efficient implementation of the Riccati recursion for solving linear-quadratic control problems , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[46]  Emanuel Todorov,et al.  Trajectory optimization for domains with contacts using inverse dynamics , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Darwin G. Caldwell,et al.  Dynamic torque control of a hydraulic quadruped robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[49]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[50]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[51]  Pierre-Brice Wieber Author manuscript, published in "IEEE-RSJ International Conference on Intelligent Robots & Systems (2008)" Viability and Predictive Control for Safe Locomotion , 2009 .

[52]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[53]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[54]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[55]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[56]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[57]  Pll Siinksen,et al.  Control , 1999, Netherlands Journal of Plant Pathology.

[58]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[59]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[60]  L. Liao,et al.  Advantages of Differential Dynamic Programming Over Newton''s Method for Discrete-time Optimal Control Problems , 1992 .

[61]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[62]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[63]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Jose Luis Blanco,et al.  A tutorial on SE(3) transformation parameterizations and on-manifold optimization , 2012 .

[65]  Christoph Hertzberg,et al.  A Framework for Sparse, Non-Linear Least Squares Problems on Manifolds-Ein Rahmen für dünnbesetzte, nichtlineare quadratische Ausgleichsrechnung auf Mannigfaltigkeiten , 2008 .

[66]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[67]  Pierre-Brice Wieber,et al.  Holonomy and Nonholonomy in the Dynamics of Articulated Motion , 2006 .

[68]  Pierre-Brice Wieber,et al.  Fast Direct Multiple Shooting Algorithms for Optimal Robot Control , 2005 .

[69]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[70]  R. Fletcher A modified Marquardt subroutine for non-linear least squares , 1971 .

[71]  D. Mayne A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems , 1966 .