Navigation in Large Groups of Robots

As robots become more ubiquitous, research in large-scale robot navigation has gained more focus given their potential real-world applications. This review intends to provide a summary of recent advances on the field of multi-robot navigation, focusing on cases where scale is an important attribute of the system. Experimental evaluation of a large number of robots is complex due to size and cost constraints. Successful applications of large-scale robot navigation approaches are in structured and known environments where robots are centrally controlled. Advances in the standardization of robot hardware and software are increasing interest for research in navigation for large groups of robots. We present a review on navigation approaches for multi-robot systems. Then, we focus on recent articles that deal with the problem of moving a large number of robots in virtual or physical space. Finally, we summarize our main findings and emphasize the challenges.

[1]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[2]  Jia Pan,et al.  Fully Distributed Multi-Robot Collision Avoidance via Deep Reinforcement Learning for Safe and Efficient Navigation in Complex Scenarios , 2018, ArXiv.

[3]  Ioannis Karamouzas,et al.  Universal power law governing pedestrian interactions. , 2014, Physical review letters.

[4]  Robin R. Murphy,et al.  Reliability analysis of mobile robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[6]  Dinesh Manocha,et al.  Simulating heterogeneous crowd behaviors using personality trait theory , 2011, SCA '11.

[7]  Dinesh Manocha,et al.  Proxemic group behaviors using reciprocal multi-agent navigation , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Eliseo Ferrante,et al.  ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Jonathan P. How,et al.  Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[11]  Ahmad A. Masoud,et al.  Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[13]  Oussama Khatib,et al.  Robotics and the Handbook , 2016, Springer Handbook of Robotics, 2nd Ed..

[14]  Kurt Konolige,et al.  Centibots: Very Large Scale Distributed Robotic Teams , 2004, AAAI.

[15]  Roland Siegwart,et al.  Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots , 2013 .

[16]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Dinesh Manocha,et al.  LSwarm: Efficient Collision Avoidance for Large Swarms With Coverage Constraints in Complex Urban Scenes , 2019, IEEE Robotics and Automation Letters.

[18]  Marc Carreras,et al.  A survey on coverage path planning for robotics , 2013, Robotics Auton. Syst..

[19]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[20]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[21]  Marcelo H. Ang,et al.  Perception, Planning, Control, and Coordination for Autonomous Vehicles , 2017 .

[22]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[23]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[24]  Andrea Gasparri,et al.  Distributed Control of Multirobot Systems With Global Connectivity Maintenance , 2013, IEEE Trans. Robotics.

[25]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[26]  Daniela Rus,et al.  Particle robotics based on statistical mechanics of loosely coupled components , 2019, Nature.

[27]  Jingjin Yu,et al.  Effective Heuristics for Multi-Robot Path Planning in Warehouse Environments , 2019, 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).

[28]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[29]  Simon Lacroix,et al.  Simulating Complex Robotic Scenarios with MORSE , 2012, SIMPAR.

[30]  Corina S. Pasareanu,et al.  Planning, Scheduling and Monitoring for Airport Surface Operations , 2016, AAAI Workshop: Planning for Hybrid Systems.

[31]  Roni Stern,et al.  Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks , 2019, SOCS.

[32]  Steven M. LaValle,et al.  Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics , 2015, IEEE Transactions on Robotics.

[33]  Uwe R. Zimmer,et al.  Distributed shape control of homogeneous swarms of autonomous underwater vehicles , 2007, Auton. Robots.

[34]  Dieter Fox,et al.  Centibots: Very Large Scale Distributed Robotic Teams , 2004, AAAI.

[35]  Karl Tuyls,et al.  Multi-robot collision avoidance with localization uncertainty , 2012, AAMAS.

[36]  Charles W. Warren,et al.  Multiple robot path coordination using artificial potential fields , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[37]  Stéphane Donikian,et al.  Experiment-based modeling, simulation and validation of interactions between virtual walkers , 2009, SCA '09.

[38]  Maria L. Gini,et al.  Anytime navigation with Progressive Hindsight optimization , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Dorian Kodelja,et al.  Multiagent cooperation and competition with deep reinforcement learning , 2015, PloS one.

[40]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[41]  James D. McLurkin Stupid robot tricks : a behavior-based distributed algorithm library for programming swarms of robots , 2004 .

[42]  William M. Spears,et al.  Distributed, Physics-Based Control of Swarms of Vehicles , 2004 .

[43]  Andrew Tinka,et al.  Lifelong Multi-Agent Path Finding in Large-Scale Warehouses , 2020, AAMAS.

[44]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[45]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[46]  Dinesh Manocha,et al.  Multi-robot coordination using generalized social potential fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[47]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[48]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[49]  Gaurav S. Sukhatme,et al.  Trajectory Planning for Quadrotor Swarms , 2018, IEEE Transactions on Robotics.

[50]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[51]  Maria L. Gini,et al.  Implicit Coordination in Crowded Multi-Agent Navigation , 2016, AAAI.

[52]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[53]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[54]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[55]  Roman Barták,et al.  Multi-Agent Path Finding on Ozobots , 2019, IJCAI.

[56]  R. Olfati-Saber,et al.  Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[57]  R. Olfati-Saber,et al.  Collision avoidance for multiple agent systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[58]  Steven M. LaValle,et al.  Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs , 2013, AAAI.

[59]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[60]  Luca Maria Gambardella,et al.  Cooperative navigation in robotic swarms , 2014, Swarm Intelligence.

[61]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[63]  Richard Vaughan,et al.  Massively multi-robot simulation in stage , 2008, Swarm Intelligence.

[64]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[65]  Magnus Egerstedt,et al.  Distributed Coordination Control of Multiagent Systems While Preserving Connectedness , 2007, IEEE Transactions on Robotics.

[66]  Takeo Kanade,et al.  Automated Construction of Robotic Manipulation Programs , 2010 .

[67]  SharirMicha Algorithmic Motion Planning in Robotics , 1989 .

[68]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[69]  Jia Pan,et al.  Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios , 2020, Int. J. Robotics Res..

[70]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[71]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[72]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[73]  Radhika Nagpal,et al.  Programmable Self-disassembly for Shape Formation in Large-Scale Robot Collectives , 2016, DARS.

[74]  Richard M. Murray,et al.  Flocking with obstacle avoidance: cooperation with limited communication in mobile networks , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[75]  Jakub Tomek,et al.  When a Couple Goes Together: Walk along Steering , 2011, MIG.

[76]  Raffaello D'Andrea,et al.  Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses , 2007, AI Mag..

[77]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[78]  Surya P. N. Singh,et al.  V-REP: A versatile and scalable robot simulation framework , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[79]  Michael Hamer,et al.  Fast Generation of Collision-Free Trajectories for Robot Swarms Using GPU Acceleration , 2019, IEEE Access.

[80]  Gaurav S. Sukhatme,et al.  Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[81]  Wenhao Ding,et al.  Hierarchical Reinforcement Learning Framework Towards Multi-Agent Navigation , 2018, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[82]  Pradeep K. Khosla,et al.  Superquadric artificial potentials for obstacle avoidance and approach , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[83]  Tucker R. Balch,et al.  Social potentials for scalable multi-robot formations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[84]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[85]  Marco Dorigo,et al.  Teamwork in Self-Organized Robot Colonies , 2009, IEEE Transactions on Evolutionary Computation.

[86]  Maria L. Gini,et al.  ALAN: adaptive learning for multi-agent navigation , 2017, Autonomous Robots.

[87]  P. Khosla,et al.  Artificial potentials with elliptical isopotential contours for obstacle avoidance , 1987, 26th IEEE Conference on Decision and Control.

[88]  Sven Koenig,et al.  Lifelong Path Planning with Kinematic Constraints for Multi-Agent Pickup and Delivery , 2018, AAAI.

[89]  Maria L. Gini,et al.  Adaptive Learning for Multi-Agent Navigation , 2015, AAMAS.

[90]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).