Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search

Inspection planning, the task of planning motions that allow a robot to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion planning roadmap using sampling-based algorithms, and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We demonstrate IRIS's efficacy on a simulated planar 5DOF manipulator inspection task and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered anatomy segmented from patient CT data. We show that IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.

[1]  M. Carreras,et al.  Mapping the Moon: Using a lightweight AUV to survey the site of the 17th century ship ‘La Lune’ , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[2]  Lakmal Seneviratne,et al.  A survey on inspecting structures using robotic systems , 2016 .

[3]  Hanumant Singh,et al.  Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle , 2010, J. Field Robotics.

[4]  Stefan B. Williams,et al.  Generation and visualization of large‐scale three‐dimensional reconstructions from underwater robotic surveys , 2010, J. Field Robotics.

[5]  Siddhartha S. Srinivasa,et al.  Following Surgical Trajectories with Concentric Tube Robots via Nearest-Neighbor Graphs , 2018, ISER.

[6]  Kevin M. Lynch,et al.  Modern Robotics: Mechanics, Planning, and Control , 2017 .

[7]  Siddhartha S. Srinivasa,et al.  Lazy Receding Horizon A* for Efficient Path Planning in Graphs with Expensive-to-Evaluate Edges , 2018, ICAPS.

[8]  Y. Nie,et al.  Bicriterion Shortest Path Problem with a General Nonadditive Cost , 2013 .

[9]  Nicholas M. Patrikalakis,et al.  Asymptotically optimal inspection planning using systems with differential constraints , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[11]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[12]  Roland Siegwart,et al.  Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics , 2015, ICRA 2015.

[13]  Lydia E. Kavraki,et al.  Randomized planning for short inspection paths , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[15]  Franz S. Hover,et al.  Sampling-Based Coverage Path Planning for Inspection of Complex Structures , 2012, ICAPS.

[16]  Franz S. Hover,et al.  Planning Complex Inspection Tasks Using Redundant Roadmaps , 2011, ISRR.

[17]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[18]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Maxim Likhachev,et al.  Online, interactive user guidance for high-dimensional, constrained motion planning , 2017, IJCAI.

[20]  Arthur W. Mahoney,et al.  Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation With Uncertainty , 2017, IEEE Robotics and Automation Letters.

[21]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Is Good Enough for Motion Planning , 2011, ISRR.

[22]  Dan Halperin,et al.  Asymptotically-optimal Motion Planning using lower bounds on cost , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Daniele Frigioni,et al.  Fully Dynamic Algorithms for Maintaining Shortest Paths Trees , 2000, J. Algorithms.

[24]  Roland Siegwart,et al.  An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees , 2016, Robotica.

[25]  Robert J. Webster,et al.  Kinematic Design Optimization of a Parallel Surgical Robot to Maximize Anatomical Visibility via Motion Planning , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[27]  Wolfram Burgard,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[28]  Siddhartha S. Srinivasa,et al.  Efficient Motion Planning for Problems Lacking Optimal Substructure , 2017, ICAPS.

[29]  J Webster Robert,et al.  Reconfigurable parallel continuum robots for incisionless surgery , 2016 .

[30]  Rudi Penne,et al.  A Gradient-Based Inspection Path Optimization Approach , 2018, IEEE Robotics and Automation Letters.

[31]  Dana R. Yoerger,et al.  Autonomous underwater vehicle maps seafloor , 1997 .

[32]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[33]  Siddhartha S. Srinivasa,et al.  Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles , 2019, ICAPS.

[34]  Marc Carreras,et al.  A survey on coverage path planning for robotics , 2013, Robotics Auton. Syst..

[35]  Jan Faigl,et al.  Random Inspection Tree Algorithm in visual inspection with a realistic sensing model and differential constraints , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Michele Germani,et al.  Off-line view planning for the inspection of mechanical parts , 2013 .

[37]  Marco Pavone,et al.  Group Marching Tree: Sampling-Based Approximately Optimal Motion Planning on GPUs , 2017, 2017 First IEEE International Conference on Robotic Computing (IRC).

[38]  Dan Halperin,et al.  Asymptotically near-optimal RRT for fast, high-quality, motion planning , 2014, ICRA.

[39]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[40]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[41]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[42]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[43]  Christos D. Zaroliagis,et al.  Non-additive Shortest Paths , 2004, ESA.

[44]  David Pisinger,et al.  Multi-objective and multi-constrained non-additive shortest path problems , 2011, Comput. Oper. Res..

[45]  Stefan Edelkamp,et al.  Multiregion Inspection by Combining Clustered Traveling Salesman Tours With Sampling-Based Motion Planning , 2017, IEEE Robotics and Automation Letters.

[46]  Kris Hauser,et al.  Lazy collision checking in asymptotically-optimal motion planning , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[48]  Marco Pavone,et al.  An asymptotically-optimal sampling-based algorithm for Bi-directional motion planning , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[49]  Marco Pavone,et al.  Optimal sampling-based motion planning under differential constraints: The driftless case , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[50]  Siddhartha S. Srinivasa,et al.  A Unifying Formalism for Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-First Search over Paths with Edge Selectors , 2016, ICAPS.

[51]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[52]  Roland Siegwart,et al.  Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots , 2015, Autonomous Robots.

[53]  Christos D. Zaroliagis,et al.  Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-Linear Objectives with Applications , 2006, Theory of Computing Systems.

[54]  Thomas W. Reps,et al.  On the Computational Complexity of Dynamic Graph Problems , 1996, Theor. Comput. Sci..

[55]  Siddhartha S. Srinivasa,et al.  The Provable Virtue of Laziness in Motion Planning , 2017, ICAPS.

[56]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[57]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[58]  Maxim Likhachev,et al.  Effective Footstep Planning for Humanoids Using Homotopy-Class Guidance , 2017, ICAPS.