A single-cell spiking model for the origin of grid-cell patterns

Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity.

[1]  R. Llinás,et al.  Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[4]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[5]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[6]  R. Llinás,et al.  Entorhinal cortex long-term potentiation evoked by theta-patterned stimulation of associative fibers in the isolated in vitro guinea pig brain , 1993, Brain Research.

[7]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[8]  Charlotte N. Boccara,et al.  Superficial layers of the medial entorhinal cortex replay independently of the hippocampus , 2017, Science.

[9]  C. Goodman,et al.  Synapse-specific control of synaptic efficacy at the terminals of a single neuron , 1998, Nature.

[10]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[11]  Christian Leibold,et al.  Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields. , 2017, Physical review letters.

[12]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[13]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[14]  M. Nolan,et al.  HCN1 Channels Control Resting and Active Integrative Properties of Stellate Cells from Layer II of the Entorhinal Cortex , 2007, The Journal of Neuroscience.

[15]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[16]  C. Leibold,et al.  Analysis of Excitatory Microcircuitry in the Medial Entorhinal Cortex Reveals Cell-Type-Specific Differences , 2010, Neuron.

[17]  Alexander Mathis,et al.  Connecting multiple spatial scales to decode the population activity of grid cells , 2015, Science Advances.

[18]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[19]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[20]  O. Barak,et al.  Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex , 2015, Hippocampus.

[21]  F. D. da Silva,et al.  Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro , 1998, The European journal of neuroscience.

[22]  Lisa M. Giocomo,et al.  Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons , 2007, Hippocampus.

[23]  Andrey Stepanyuk,et al.  Self-organization of grid fields under supervision of place cells in a neuron model with associative plasticity , 2015, BICA 2015.

[24]  Edvard I. Moser,et al.  Shearing-induced asymmetry in entorhinal grid cells , 2015, Nature.

[25]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[26]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[27]  Olga Kornienko,et al.  Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex , 2016, eLife.

[28]  Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro , 1998, The European journal of neuroscience.

[29]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[30]  Yasser Roudi,et al.  Correlations and Functional Connections in a Population of Grid Cells , 2014, PLoS Comput. Biol..

[31]  M. Witter,et al.  Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat , 1993, The Journal of comparative neurology.

[32]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.

[33]  D DiFrancesco,et al.  From funny current to HCN channels: 20 years of excitation. , 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[34]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[35]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[36]  Caswell Barry,et al.  Grid cell symmetry is shaped by environmental geometry , 2015, Nature.

[37]  I. Fiete,et al.  A Model of Grid Cell Development through Spatial Exploration and Spike Time-Dependent Plasticity , 2014, Neuron.

[38]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[39]  A. Treves,et al.  Author response: The self-organization of grid cells in 3D , 2015 .

[40]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[41]  H. Teitelbaum,et al.  Relationship between hippocampal theta activity and running speed in the rat. , 1975, Journal of comparative and physiological psychology.

[42]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[43]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[44]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[45]  J. Winson,et al.  Patterns of hippocampal theta rhythm in the freely moving rat. , 1974, Electroencephalography and clinical neurophysiology.

[46]  Neil Burgess,et al.  Grid-like Processing of Imagined Navigation , 2016, Current Biology.

[47]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[48]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[49]  Paul F. M. J. Verschure,et al.  A Model of Grid Cells Based on a Twisted Torus Topology , 2007, Int. J. Neural Syst..

[50]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[51]  Ila R Fiete,et al.  What Grid Cells Convey about Rat Location , 2008, The Journal of Neuroscience.

[52]  N. Burgess,et al.  A Hybrid Oscillatory Interference/Continuous Attractor Network Model of Grid Cell Firing , 2014, The Journal of Neuroscience.

[53]  Ron Meir,et al.  Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis , 2016, eLife.

[54]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[55]  D. Manahan‐Vaughan,et al.  Distinct mechanisms of bidirectional activity‐dependent synaptic plasticity in superficial and deep layers of rat entorhinal cortex , 2004, The European journal of neuroscience.

[56]  I. Mook‐Jung,et al.  Variation in Effective Stimulus Patterns for Induction of Long-term Potentiation across Different Layers of Rat Entorhinal Cortex , 2022 .

[57]  James G. Heys,et al.  The Functional Micro-organization of Grid Cells Revealed by Cellular-Resolution Imaging , 2014, Neuron.

[58]  Thomas J. Wills,et al.  Theta-Modulated Place-by-Direction Cells in the Hippocampal Formation in the Rat , 2004, The Journal of Neuroscience.

[59]  Eric A. Zilli,et al.  Models of Grid Cell Spatial Firing Published 2005–2011 , 2012, Front. Neural Circuits.

[60]  Henning Sprekeler,et al.  Learning place cells, grid cells and invariances: A unifying model , 2017, bioRxiv.

[61]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[62]  Matthew F. Nolan,et al.  Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields , 2012, Front. Neural Circuits.

[63]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[64]  U. Heinemann,et al.  Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex , 2000, Neuroscience Letters.

[65]  P. Deng,et al.  Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. , 2007, Journal of neurophysiology.

[66]  Martin Stemmler,et al.  Optimal Population Codes for Space: Grid Cells Outperform Place Cells , 2012, Neural Computation.

[67]  C. Barry,et al.  Specific evidence of low-dimensional continuous attractor dynamics in grid cells , 2013, Nature Neuroscience.

[68]  Lacey J. Kitch,et al.  Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells , 2015, Proceedings of the National Academy of Sciences.

[69]  Michael E. Hasselmo,et al.  Time Constants of h Current in Layer II Stellate Cells Differ along the Dorsal to Ventral Axis of Medial Entorhinal Cortex , 2008, The Journal of Neuroscience.

[70]  Benjamin A. Dunn,et al.  Grid cells require excitatory drive from the hippocampus , 2013, Nature Neuroscience.

[71]  J. Knierim,et al.  Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus , 2007, Hippocampus.

[72]  Alessandro Treves,et al.  A model for the differentiation between grid and conjunctive units in medial entorhinal cortex , 2013, Hippocampus.

[73]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[75]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[76]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[77]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[78]  Matthew F. Nolan,et al.  Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex , 2015, Neuron.

[79]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[80]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[81]  Thomas J. Wills,et al.  Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse , 2016, Current Biology.

[82]  D. Lee,et al.  Long-term synaptic plasticity in deep layer-originated associational projections to superficial layers of rat entorhinal cortex , 2004, Neuroscience.

[83]  Alessandro Treves,et al.  Selforganization of modular activity of grid cells , 2017, Hippocampus.

[84]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[85]  Yasser Roudi,et al.  Ten Years of Grid Cells. , 2016, Annual review of neuroscience.

[86]  Luísa Castro,et al.  A feedforward model for the formation of a grid field where spatial information is provided solely from place cells , 2013, Biological Cybernetics.

[87]  Caswell Barry,et al.  Coordinated grid and place cell replay during rest , 2016, Nature Neuroscience.

[88]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[89]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[90]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[91]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[92]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[93]  T. van Groen,et al.  The connections of presubiculum and parasubiculum in the rat , 1990, Brain Research.

[94]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[95]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[96]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[97]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[98]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[99]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[100]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[101]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  Yangfan Peng,et al.  Excitatory Microcircuits within Superficial Layers of the Medial Entorhinal Cortex. , 2017, Cell reports.

[103]  M. Moser,et al.  Stellate cells drive maturation of the entorhinal-hippocampal circuit , 2017, Science.

[104]  I. Whishaw,et al.  Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation , 1999, Behavioural Brain Research.

[105]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[106]  Alessandro Treves,et al.  Grid alignment in entorhinal cortex , 2012, Biological Cybernetics.

[107]  Kamal Sen,et al.  Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[109]  Romain Brette,et al.  Equation-oriented specification of neural models for simulations , 2013, Front. Neuroinform..

[110]  Richard Kempter,et al.  Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments , 2014, PloS one.

[111]  P. Jonas,et al.  Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks , 2016, Nature Communications.

[112]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[113]  Lisa M. Giocomo,et al.  Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after‐spike dynamics , 2012, Hippocampus.

[114]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[115]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[116]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[117]  W. Senn,et al.  Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. , 2006, Journal of neurophysiology.

[118]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[119]  J. Knierim,et al.  Influence of boundary removal on the spatial representations of the medial entorhinal cortex , 2008, Hippocampus.

[120]  S. Kasicki,et al.  The frequency of rat's hippocampal theta rhythm is related to the speed of locomotion , 1998, Brain Research.

[121]  Kempter Richard Inheritance of place fields in the hippocampus through Hebbian learning , 2011 .

[122]  Timothy E. J. Behrens,et al.  Organizing conceptual knowledge in humans with a gridlike code , 2016, Science.

[123]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[124]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[126]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[127]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[128]  John O'Keefe,et al.  Framing the grid: effect of boundaries on grid cells and navigation , 2016, The Journal of physiology.

[129]  A. Treves,et al.  Grid cells on the ball , 2013 .

[130]  E. Moser,et al.  All Layers of Medial Entorhinal Cortex Receive Presubicular and Parasubicular Inputs , 2012, The Journal of Neuroscience.

[131]  R. Nicoll,et al.  Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. , 1981, Science.

[132]  Michael Brecht,et al.  Functional Architecture of the Rat Parasubiculum , 2016, The Journal of Neuroscience.

[133]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[134]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[135]  M. Hasselmo,et al.  Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing , 2010, The Journal of Neuroscience.

[136]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[137]  M. Hasselmo,et al.  Comparison of Properties of Medial Entorhinal Cortex Layer II Neurons in Two Anatomical Dimensions with and without Cholinergic Activation , 2013, PloS one.

[138]  Thomas J. Wills,et al.  The abrupt development of adult-like grid cell firing in the medial entorhinal cortex , 2012, Front. Neural Circuits.

[139]  Richard Kempter,et al.  Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession on Structure Formation , 2015, Neural Computation.

[140]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[141]  M. V. Rossum,et al.  Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields , 2013, Neuron.

[142]  Neil Burgess,et al.  Using Grid Cells for Navigation , 2015, Neuron.

[143]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[144]  M. Brecht,et al.  Pyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex , 2014, Neuron.

[145]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[146]  Hannah Monyer,et al.  Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex , 2016, Neuron.

[147]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[148]  P. Beckmann Statistical distribution of the amplitude and phase of a multiply scattered field , 1962 .

[149]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[150]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.