Multi-agent Path Planning and Network Flow

This paper connects multi-agent path planning on graphs (roadmaps) to network flow problems, showing that the former can be reduced to the latter, therefore enabling the application of combinatorial network flow algorithms, as well as general linear program techniques, to multi-agent path planning problems on graphs. Exploiting this connection, we show that when the goals are permutation invariant, the problem always has a feasible solution path set with a longest finish time of no more than $n + V - 1$ steps, in which $n$ is the number of agents and $V$ is the number of vertices of the underlying graph. We then give a complete algorithm that finds such a solution in $O(nVE)$ time, with $E$ being the number of edges of the graph. Taking a further step, we study time and distance optimality of the feasible solutions, show that they have a pairwise Pareto optimal structure, and again provide efficient algorithms for optimizing two of these practical objectives.

[1]  Seth Hutchinson,et al.  Path planning for permutation-invariant multirobot formations , 2005, IEEE Transactions on Robotics.

[2]  Bartholomew O. Nnaji Theory of automatic robot assembly and programming , 1992 .

[3]  Damjan Miklic,et al.  A discrete grid abstraction for formation control in the presence of obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  T. Murphey,et al.  Switching Rules for Decentralized Control with Simple Control Laws , 2007, 2007 American Control Conference.

[5]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[6]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[7]  Magnus Egerstedt,et al.  Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints , 2009, Mob. Networks Appl..

[8]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[9]  Gaurav S. Sukhatme,et al.  Constrained coverage for mobile sensor networks , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[11]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[12]  Magnus Egerstedt,et al.  Automatic deployment and formation control of decentralized multi-agent networks , 2008, 2008 IEEE International Conference on Robotics and Automation.

[13]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[14]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[15]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[16]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[17]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[18]  Yi Guo,et al.  A distributed and optimal motion planning approach for multiple mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[20]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[21]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[22]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[23]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[24]  Kostas E. Bekris,et al.  Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees , 2011, IJCAI.

[25]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[26]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[27]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[28]  Bruce Randall Donald,et al.  Moving furniture with teams of autonomous robots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[29]  Éva Tardos,et al.  “The quickest transshipment problem” , 1995, SODA '95.

[30]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[31]  Andrew V. Goldberg,et al.  Finding minimum-cost flows by double scaling , 2015, Math. Program..

[32]  Pavel Surynek,et al.  An Optimization Variant of Multi-Robot Path Planning Is Intractable , 2010, AAAI.

[33]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[34]  Frédéric Roupin,et al.  Minimal multicut and maximal integer multiflow: A survey , 2005, Eur. J. Oper. Res..

[35]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[36]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[37]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 2000, Algorithmica.

[38]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[39]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[40]  John McPhee,et al.  A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps , 2008, IEEE Transactions on Robotics.

[41]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[42]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[43]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[44]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[45]  Nancy M. Amato,et al.  Behavior-based evacuation planning , 2010, 2010 IEEE International Conference on Robotics and Automation.

[46]  Adi Botea,et al.  Tractable Multi-Agent Path Planning on Grid Maps , 2009, IJCAI.

[47]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[48]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[49]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[50]  Martin Grötschel,et al.  Complexity, Oracles, and Numerical Computation , 1988 .

[51]  G. Whelan,et al.  Cooperative search and rescue with a team of mobile robots , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[52]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[53]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[54]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[55]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[56]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.