Sensor-based reactive navigation in unknown convex sphere worlds

We construct a sensor-based feedback law that provably solves the real-time collision-free robot navigation problem in a compact convex Euclidean subset cluttered with unknown but sufficiently separated and strongly convex obstacles. Our algorithm introduces a novel use of separating hyperplanes for identifying the robot’s local obstacle-free convex neighborhood, affording a reactive (online-computed) continuous and piecewise smooth closed-loop vector field whose smooth flow brings almost all configurations in the robot’s free space to a designated goal location, with the guarantee of no collisions along the way. Specialized attention to planar navigable environments yields a necessary and sufficient condition on convex obstacles for almost-global navigation towards any goal location in the environment. We further extend these provable properties of the planar setting to practically motivated limited range, isotropic and anisotropic sensing models, and the non-holonomically constrained kinematics of the standard differential-drive vehicle. We conclude with numerical and experimental evidence demonstrating the effectiveness of the proposed sensory feedback motion planner.

[1]  Howie Choset,et al.  Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph , 2000, Int. J. Robotics Res..

[2]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[3]  Kostas J. Kyriakopoulos,et al.  Locally Computable Navigation Functions for Sphere Worlds , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Frank L. Lewis,et al.  Control of a nonholomic mobile robot: Backstepping kinematics into dynamics , 1997, J. Field Robotics.

[5]  Omur Arslan,et al.  Clustering-based robot navigation and control , 2016 .

[6]  R. Holmes Smoothness of certain metric projections on Hilbert space , 1973 .

[7]  Howie Choset,et al.  Integrating planning and control for single-bodied wheeled mobile robots , 2011, Auton. Robots.

[8]  A. Astolfl,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 2007 .

[9]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[10]  Alejandro Ribeiro,et al.  Stochastic Artificial Potentials for Online Safe Navigation , 2016, IEEE Transactions on Automatic Control.

[11]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[12]  R. Phelps,et al.  Differentiability of the metric projection in Hilbert space , 1982 .

[13]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[14]  L. Khachiyan,et al.  The polynomial solvability of convex quadratic programming , 1980 .

[15]  Vasileios Vasilopoulos,et al.  Sensor-based legged robot homing using range-only target localization , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[16]  Daniel E. Koditschek,et al.  Voronoi-based coverage control of heterogeneous disk-shaped robots , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[18]  Daniel E. Koditschek,et al.  Exact robot navigation using power diagrams , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Nicholas Roy,et al.  Sensor-Based Reactive Symbolic Planning in Partially Known Environments , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Daniel E. Koditschek,et al.  Integration of Local Geometry and Metric Information in Sampling-Based Motion Planning , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[22]  Dinesh Manocha,et al.  A Voronoi-based hybrid motion planner , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[23]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[24]  Daniel E. Koditschek,et al.  Smooth extensions of feedback motion planners via reference governors , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[25]  rha 4. Mdha Lipschitzian Properties of Multifunctions , 2010 .

[26]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[27]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[28]  Kostas J. Kyriakopoulos,et al.  Adjustable navigation functions for unknown sphere worlds , 2011, IEEE Conference on Decision and Control and European Control Conference.

[29]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[30]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[31]  H. G. Eggleston Convexity by H. G. Eggleston , 1958 .

[32]  Mingyu Wang,et al.  Safe Distributed Lane Change Maneuvers for Multiple Autonomous Vehicles Using Buffered Input Cells , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Stefano Di Cairano,et al.  Reference and command governors: A tutorial on their theory and automotive applications , 2014, 2014 American Control Conference.

[34]  Howie Choset,et al.  Coverage Path Planning: The Boustrophedon Cellular Decomposition , 1998 .

[35]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[36]  Daniel E. Koditschek,et al.  Adaptive Techniques for Mechanical Systems , 1987 .

[37]  Lydia E. Kavraki,et al.  A framework for using the workspace medial axis in PRM planners , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[38]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[39]  J. Penot Elements of Differential Calculus , 2013 .

[40]  Kostas J. Kyriakopoulos,et al.  Navigation Functions for everywhere partially sufficiently curved worlds , 2012, 2012 IEEE International Conference on Robotics and Automation.

[41]  R. W. Chaney Piecewise functions in nonsmooth analysis , 1990 .

[42]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[43]  Daniel E. Koditschek,et al.  Coordinated Robot Navigation via Hierarchical Clustering , 2015, IEEE Transactions on Robotics.

[44]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[45]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[47]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[48]  Daniel E. Koditschek Some Applications of Natural Motion Control , 1991 .

[49]  Irl C. Bivens,et al.  Calculus, Early Transcendentals , 2002 .

[50]  S. Scholtes,et al.  Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections , 1994 .

[51]  Michael Farber Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..

[52]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[53]  Daniel E. Koditschek,et al.  Sensor-based reactive navigation in unknown convex sphere worlds , 2018, Int. J. Robotics Res..

[54]  P. Olver Nonlinear Systems , 2013 .

[55]  Alfred A. Rizzi,et al.  Autonomous navigation for BigDog , 2010, 2010 IEEE International Conference on Robotics and Automation.

[56]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[57]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[58]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[59]  Jiming Liu Sensitivity Analysis in Nonlinear Programs and Variational Inequalities via Continuous Selections , 1995 .

[60]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[61]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[62]  Daniel E. Koditschek,et al.  Autonomous legged hill ascent , 2018, J. Field Robotics.

[63]  Vijay Kumar,et al.  Sensing and coverage for a network of heterogeneous robots , 2008, 2008 47th IEEE Conference on Decision and Control.

[64]  Andreas Krause,et al.  Robot navigation in dense human crowds: Statistical models and experimental studies of human–robot cooperation , 2015, Int. J. Robotics Res..

[65]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[66]  Daniel E. Koditschek,et al.  Sensory steering for sampling-based motion planning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[67]  Emilio Frazzoli,et al.  High-speed flight in an ergodic forest , 2012, 2012 IEEE International Conference on Robotics and Automation.

[68]  Sonia Martínez,et al.  Deployment algorithms for a power-constrained mobile sensor network , 2008, 2008 IEEE International Conference on Robotics and Automation.

[69]  Aaron M. Johnson,et al.  Autonomous legged hill and stairwell ascent , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[70]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[71]  Saptarshi Bandyopadhyay,et al.  Fast, On-line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells , 2017, IEEE Robotics and Automation Letters.

[72]  Howie Choset,et al.  Flow-Through Policies for Hybrid Controller Synthesis Applied to Fully Actuated Systems , 2009, IEEE Transactions on Robotics.

[73]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[74]  Soon-Jo Chung,et al.  Motion primitives and 3D path planning for fast flight through a forest , 2015, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[75]  Christian Vollmer,et al.  Learning to navigate through crowded environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[76]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[77]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[78]  Alejandro Ribeiro,et al.  Navigation Functions for Convex Potentials in a Space With Convex Obstacles , 2016, IEEE Transactions on Automatic Control.

[79]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[80]  Daniela Rus,et al.  Distributed target tracking in cluttered environments with guaranteed collision avoidance , 2017, 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).