Anthropomorphic Movement Analysis and Synthesis: A Survey of Methods and Applications

The anthropomorphic body form is a complex articulated system of links/limbs and joints, simultaneously redundant and underactuated, and capable of a wide range of sophisticated movement. The human body and its movement have long been a topic of study in physiology, anatomy, biomechanics, and neuroscience and have served as inspiration for humanoid robot design and control. This survey paper reviews the literature on robotics research using anthropomorphic design principles as an inspiration, at both the design and control levels. Next, anthropomorphic body modeling, motion analysis, and synthesis techniques are overviewed. Finally, key applications arising at the intersection of robotics and human movement science are introduced. The survey ends with a discussion of open research questions and directions for future work.

[1]  Xing-Dong Yang,et al.  Physio@Home: Exploring Visual Guidance and Feedback Techniques for Physiotherapy Exercises , 2015, CHI.

[2]  Koh Hosoda,et al.  Anthropomorphic Muscular–Skeletal Robotic Upper Limb for Understanding Embodied Intelligence , 2012, Adv. Robotics.

[3]  S. Leonhardt,et al.  A survey on robotic devices for upper limb rehabilitation , 2014, Journal of NeuroEngineering and Rehabilitation.

[4]  H. Bock,et al.  Efficient direct multiple shooting for nonlinear model predictive control on long horizons , 2012 .

[5]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[6]  Okan Arikan Compression of motion capture databases , 2006, ACM Trans. Graph..

[7]  Jun Nakanishi,et al.  Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors , 2013, Neural Computation.

[8]  Gregor Schöner,et al.  Toward a new theory of motor synergies. , 2007, Motor control.

[9]  Carlos Canudas-de-Wit,et al.  Generation of energy optimal complete gait cycles for biped robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[11]  Yu Zheng,et al.  Human motion tracking control with strict contact force constraints for floating-base humanoid robots , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[12]  Yoshihiko Nakamura,et al.  Simultaneous global inverse kinematics and geometric parameter identification of human skeletal model from motion capture data , 2014 .

[13]  Eiichi Yoshida,et al.  Humanoids , 2016, Springer Handbook of Robotics, 2nd Ed..

[14]  Emel Demircan,et al.  EMG-INFORMED COMPUTED MUSCLE CONTROL FOR DYNAMIC SIMULATIONS OF MOVEMENT , 2009 .

[15]  I Jonkers,et al.  Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. , 2008, Journal of biomechanics.

[16]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[17]  Constantinos Mavroidis,et al.  Robotic Systems for Gait Rehabilitation , 2014 .

[18]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[19]  Terry K K Koo,et al.  In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects. , 2002, Clinical biomechanics.

[20]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[21]  Frank Chongwoo Park,et al.  Newton-type algorithms for dynamics-based robot movement optimization , 2005, IEEE Transactions on Robotics.

[22]  Helmut Hauser,et al.  Biologically inspired kinematic synergies enable linear balance control of a humanoid robot , 2011, Biological Cybernetics.

[23]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[24]  Aude Billard,et al.  Learning of Gestures by Imitation in a Humanoid Robot , 2007 .

[25]  Alin Albu-Schäffer,et al.  Kick it with elasticity: Safety and performance in human-robot soccer , 2009, Robotics Auton. Syst..

[26]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[27]  Richard W. Longman,et al.  Human-like actuated walking that is asymptotically stable without feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Chonhyon Park,et al.  Dynamically balanced and plausible trajectory planning for human-like characters , 2016, I3D.

[29]  Jan Peters,et al.  Reinforcement learning in robotics: A survey , 2013, Int. J. Robotics Res..

[30]  Markus H. Gross,et al.  Precision: precomputing environment semantics for contact-rich character animation , 2016, I3D.

[31]  K. Kreutz-Delgado,et al.  Optimal biped walking with a complete dynamical model , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[32]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[33]  Brian A. Garner,et al.  Estimation of Musculotendon Properties in the Human Upper Limb , 2003, Annals of Biomedical Engineering.

[34]  A. Bastian Understanding sensorimotor adaptation and learning for rehabilitation , 2008, Current opinion in neurology.

[35]  Kathrin Hatz,et al.  Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling , 2014 .

[36]  Sethu Vijayakumar,et al.  Learning null space projections , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Richard R Neptune,et al.  Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. , 2003, Gait & posture.

[38]  J. Hodgins,et al.  Animating Human Athletes , 1998 .

[39]  Sybert H. Stroeve,et al.  Learning combined feedback and feedforward control of a musculoskeletal system , 1996, Biological Cybernetics.

[40]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[41]  Takayuki Kanda,et al.  May I help you? - Design of Human-like Polite Approaching Behavior- , 2015, 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[42]  Scott L. Delp,et al.  A Model of the Lower Limb for Analysis of Human Movement , 2010, Annals of Biomedical Engineering.

[43]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[44]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[45]  Torsten Bumgarner,et al.  Biomechanics and Motor Control of Human Movement , 2013 .

[46]  K. Mombaur,et al.  Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans. , 2015, Journal of biomechanics.

[47]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[48]  K. Mombaur,et al.  Open‐loop stable solutions of periodic optimal control problems in robotics , 2005 .

[49]  R. Jensen,et al.  Estimation of the biomechanical properties of three body types using a photogrammetric method. , 1978, Journal of biomechanics.

[50]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[51]  Bernhard Schölkopf,et al.  Probabilistic movement modeling for intention inference in human–robot interaction , 2013, Int. J. Robotics Res..

[52]  Eiichi Yoshida,et al.  Evaluation of assistive devices using humanoid robot with mechanical parameters identification , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[53]  Stefan Schaal,et al.  Learning Control in Robotics , 2010, IEEE Robotics & Automation Magazine.

[54]  Paolo Baerlocher,et al.  Inverse kinematics techniques of the interactive posture control of articulated figures , 2001 .

[55]  O. Schmitt The heat of shortening and the dynamic constants of muscle , 2017 .

[56]  Yoshihiko Nakamura,et al.  Time-optimal Path Parameterization for critically dynamic motions of humanoid robots , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[57]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.

[58]  Hartmut Geyer,et al.  A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[59]  Shigeki Sugano,et al.  Development and evaluation of seven DOF MIA ARM , 1997, Proceedings of International Conference on Robotics and Automation.

[60]  Vincent De Sapio,et al.  Robotics-based synthesis of human motion , 2009, Journal of Physiology-Paris.

[61]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[62]  H. Harry Asada,et al.  Design and control of Supernumerary Robotic Limbs for balance augmentation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[63]  Baining Guo,et al.  Terrain runner , 2012, ACM Trans. Graph..

[64]  Henk Nijmeijer,et al.  Robot Programming by Demonstration , 2010, SIMPAR.

[65]  George A Tsianos,et al.  Useful properties of spinal circuits for learning and performing planar reaches , 2014, Journal of neural engineering.

[66]  Masayuki Inaba,et al.  An advanced musculoskeletal humanoid Kojiro , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[67]  Oussama Khatib,et al.  Human Motion Reconstruction and Synthesis of Human Skills , 2010 .

[68]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[69]  Karsten Berns,et al.  Modeling, Simulation and Optimization of Bipedal Walking , 2013 .

[70]  Werner Schiehlen,et al.  Physiological Methods to Solve the Force-Sharing Problem in Biomechanics , 2009 .

[71]  Shuuji Kajita,et al.  Humanoid robot HRP-2Kai — Improvement of HRP-2 towards disaster response tasks , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[72]  Masayuki Inaba,et al.  Motion Planning for Humanoid Robots , 2003, ISRR.

[73]  Dana Kulic,et al.  Online Segmentation and Clustering From Continuous Observation of Whole Body Motions , 2009, IEEE Transactions on Robotics.

[74]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[75]  Fel'dman Ag On the functional tuning of the nervous system in movement control or preservation of stationary pose. II. Adjustable parameters in muscles , 1966 .

[76]  Robert Riener,et al.  Actuator With Angle-Dependent Elasticity for Biomimetic Transfemoral Prostheses , 2015, IEEE/ASME Transactions on Mechatronics.

[77]  Yoshihiko Nakamura,et al.  Symbolic Memory of Motion Patterns by an Associative Memory Dynamics with Self-organizing Nonmonotonicity , 2007, ICONIP.

[78]  Yoshihiko Nakamura,et al.  Embodied Symbol Emergence Based on Mimesis Theory , 2004, Int. J. Robotics Res..

[79]  Joon-Ho Shin,et al.  A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments , 2014, Journal of NeuroEngineering and Rehabilitation.

[80]  Scott L Delp,et al.  Generating dynamic simulations of movement using computed muscle control. , 2003, Journal of biomechanics.

[81]  Katie A. Siek,et al.  Designing wearable interfaces for knee rehabilitation , 2014, PervasiveHealth.

[82]  Michael Damsgaard,et al.  Analysis of musculoskeletal systems in the AnyBody Modeling System , 2006, Simul. Model. Pract. Theory.

[83]  L. Stark,et al.  Muscle models: What is gained and what is lost by varying model complexity , 1987, Biological Cybernetics.

[84]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[85]  S. Delp,et al.  Variation of muscle moment arms with elbow and forearm position. , 1995, Journal of biomechanics.

[86]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[87]  K. Mombaur,et al.  Modeling and Optimal Control of Human-Like Running , 2010, IEEE/ASME Transactions on Mechatronics.

[88]  Homayoon Kazerooni,et al.  Design of a semi-active knee prosthesis , 2009, 2009 IEEE International Conference on Robotics and Automation.

[89]  Norman I. Badler,et al.  Simulating humans: computer graphics animation and control , 1993 .

[90]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[91]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[92]  Sergey Levine,et al.  Guided Policy Search , 2013, ICML.

[93]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, ACM Trans. Graph..

[94]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[95]  W S Levine,et al.  An optimal control model for maximum-height human jumping. , 1990, Journal of biomechanics.

[96]  Miguel Christophy,et al.  A Musculoskeletal model for the lumbar spine , 2011, Biomechanics and Modeling in Mechanobiology.

[97]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[98]  F. Zajac,et al.  A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. , 1990, Journal of biomechanics.

[99]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[100]  Emanuel Todorov,et al.  Compositionality of optimal control laws , 2009, NIPS.

[101]  Junichi Urata,et al.  Design concept of detail musculoskeletal humanoid “Kenshiro” - Toward a real human body musculoskeletal simulator , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[102]  D. Robertson Body Segment Parameters , 2014 .

[103]  Adrian Hilton,et al.  Hybrid Skeletal-Surface Motion Graphs for Character Animation from 4D Performance Capture , 2015, TOGS.

[104]  Stefan Schaal,et al.  Robot Programming by Demonstration , 2009, Springer Handbook of Robotics.

[105]  Benjamin D. Robertson,et al.  Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping. , 2013, Journal of applied physiology.

[106]  Ikuo Mizuuchi,et al.  End-tip speed maximization for noncyclic swing motion based on time reversal integral in multiple-joint robots , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[107]  Michelle Karg,et al.  Recognition of Affect Based on Gait Patterns , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[108]  Frans C. T. van der Helm,et al.  Passive dynamic walking model with upper body , 2004, Robotica.

[109]  Johannes P. Schlöder,et al.  Estimating Parameters in Optimal Control Problems , 2012, SIAM J. Sci. Comput..

[110]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[111]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[112]  Shinya Aoi,et al.  Locomotion Control of a Biped Robot Using Nonlinear Oscillators , 2005, Auton. Robots.

[113]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[114]  Twan Koolen,et al.  Team IHMC's Lessons Learned from the DARPA Robotics Challenge Trials , 2015, J. Field Robotics.

[115]  Yasuo Kuniyoshi,et al.  Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[116]  Andre Seyfarth,et al.  Functional gait asymmetry of unilateral transfemoral amputees. , 2012, Human movement science.

[117]  P. Guertin Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations , 2013, Front. Neur..

[118]  Martin L. Felis,et al.  Modeling Emotional Aspects in Human Locomotion , 2015 .

[119]  Timothy Bretl,et al.  Maximum entropy inverse reinforcement learning in continuous state spaces with path integrals , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[120]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  Robert Riener,et al.  Model-Based Estimation of Knee Stiffness , 2012, IEEE Transactions on Biomedical Engineering.

[122]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[123]  Bryan Buchholz,et al.  ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. , 2005, Journal of biomechanics.

[124]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[125]  Shuuji Kajita,et al.  Experimental study of biped dynamic walking in the linear inverted pendulum mode , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[126]  Ana Lucia Cruz Ruiz,et al.  Motion control via muscle synergies: application to throwing , 2015, MIG.

[127]  Christopher G. Atkeson,et al.  Versatile and robust 3D walking with a simulated humanoid robot (Atlas): A model predictive control approach , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[128]  Yeti Li,et al.  Automated Rehabilitation System: Movement Measurement and Feedback for Patients and Physiotherapists in the Rehabilitation Clinic , 2016, Hum. Comput. Interact..

[129]  Aymar de Rugy,et al.  Are muscle synergies useful for neural control? , 2013, Front. Comput. Neurosci..

[130]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[131]  C. Azevedo,et al.  Active joint visco-elasticity estimation of the human knee using FES , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[132]  Shuichi Wakimoto,et al.  Flexible artificial muscle by bundle of McKibben fiber actuators , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[133]  Oussama Khatib,et al.  Modeling and control of multi-contact centers of pressure and internal forces in humanoid robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[134]  Ajay Seth,et al.  Muscle contributions to propulsion and support during running. , 2010, Journal of biomechanics.

[135]  Shinya Aoi,et al.  Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback , 2006, IEEE Transactions on Robotics.

[136]  Siddhartha S. Srinivasa,et al.  Legibility and predictability of robot motion , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[137]  Scott Kuindersma,et al.  Modeling and Control of Legged Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[138]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models , 2011, Int. J. Robotics Res..

[139]  Eiichi Yoshida,et al.  On humanoid motion optimization , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[140]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[141]  Arthur D Kuo,et al.  The relative roles of feedforward and feedback in the control of rhythmic movements. , 2002, Motor control.

[142]  Marc Toussaint,et al.  Direct Loss Minimization Inverse Optimal Control , 2015, Robotics: Science and Systems.

[143]  Georgios Andrikopoulos,et al.  A Survey on applications of Pneumatic Artificial Muscles , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[144]  Gentiane Venture,et al.  Identification of Human Limb Viscoelasticity using Robotics Methods to Support the Diagnosis of Neuromuscular Diseases , 2009, Int. J. Robotics Res..

[145]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[146]  Gentiane Venture,et al.  Human motion characteristics in relation to feeling familiar or frightened during an announced short interaction with a proactive humanoid , 2014, Front. Neurorobot..

[147]  Eiichi Yoshida,et al.  Generation of whole-body optimal dynamic multi-contact motions , 2013, Int. J. Robotics Res..

[148]  Masayuki Inaba,et al.  Development of musculoskeletal humanoid Kotaro , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[149]  David G. Lloyd,et al.  Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies , 2016, IEEE Transactions on Biomedical Engineering.

[150]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[151]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[152]  May Q. Liu,et al.  Muscle contributions to support and progression over a range of walking speeds. , 2008, Journal of biomechanics.

[153]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[154]  R. Osu,et al.  Motor Control and Learning Theories , 2016 .

[155]  Michelle Karg,et al.  Body Movements for Affective Expression: A Survey of Automatic Recognition and Generation , 2013, IEEE Transactions on Affective Computing.

[156]  Sadao Kawamura,et al.  A New Control Method Utilizing Stiffness Adjustment of Mechanical Elastic Elements for Serial Link Systems , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[157]  John N. Howell,et al.  In vivo Measurement of Fascicle Length and Pennation Angle of the Human Biceps femoris Muscle , 2001, Cells Tissues Organs.

[158]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[159]  Gentiane Venture,et al.  Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems , 2014, Int. J. Robotics Res..

[160]  H J Grootenboer,et al.  An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. , 1995, Journal of biomechanics.

[161]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[162]  Yoshihiko Nakamura,et al.  Motion capture based human motion recognition and imitation by direct marker control , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[163]  Stefan Schaal,et al.  2008 Special Issue: Reinforcement learning of motor skills with policy gradients , 2008 .

[164]  Ling Shao,et al.  Enhanced Computer Vision With Microsoft Kinect Sensor: A Review , 2013, IEEE Transactions on Cybernetics.

[165]  A. Kuo,et al.  Active control of lateral balance in human walking. , 2000, Journal of biomechanics.

[166]  Nikolaos G. Tsagarakis,et al.  COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control , 2013, 2013 IEEE International Conference on Robotics and Automation.

[167]  S. Delp,et al.  The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. , 2007, Gait & posture.

[168]  Scott L. Delp,et al.  A computational framework for simulating and analyzing human and animal movement , 2000, Comput. Sci. Eng..

[169]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[170]  Michael Ulbrich,et al.  Optimization Criteria for Human Trajectory Formation in Dynamic Virtual Environments , 2010, EuroHaptics.

[171]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[172]  M. Tresch,et al.  The case for and against muscle synergies , 2022 .

[173]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[174]  Katja D. Mombaur,et al.  Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[175]  Katja D. Mombaur,et al.  Using optimization to create self-stable human-like running , 2009, Robotica.

[176]  Hartmut Geyer,et al.  Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[177]  Mei Kay Lee,et al.  Measurement of body segment parameters using dual energy X-ray absorptiometry and three-dimensional geometry: an application in gait analysis. , 2009, Journal of biomechanics.

[178]  Philippe Poignet,et al.  Mathematical muscle model for functional electrical stimulation control strategies , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[179]  Shuuji Kajita,et al.  Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[180]  Kazuhito Yokoi,et al.  Development of a software for motion optimization of robots - Application to the kick motion of the HRP-2 robot , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[181]  Lynne Baillie,et al.  Exploring & designing tools to enhance falls rehabilitation in the home , 2013, CHI.

[182]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[183]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[184]  Stefan Schaal,et al.  Computational approaches to motor learning by imitation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[185]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[186]  Gentiane Venture,et al.  A numerical method for choosing motions with optimal excitation properties for identification of biped dynamics - An application to human , 2009, 2009 IEEE International Conference on Robotics and Automation.

[187]  Jun-Ho Oh,et al.  Motion planning and control of ladder climbing on DRC-Hubo for DARPA Robotics Challenge , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[188]  Gentiane Venture,et al.  Fast Determination of the Planar Body Segment Inertial Parameters Using Affordable Sensors , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[189]  R. Alexander,et al.  Storage of elastic strain energy in muscle and other tissues , 1977, Nature.

[190]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[191]  Ruzena Bajcsy,et al.  Sequence of the Most Informative Joints (SMIJ): A new representation for human skeletal action recognition , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[192]  Mitsuo Kawato,et al.  MOSAIC Model for Sensorimotor Learning and Control , 2001, Neural Computation.

[193]  J. G. Andrews,et al.  A three-dimensional biomechanical model of hip musculature. , 1981, Journal of biomechanics.

[194]  Dmitry Berenson,et al.  No falls, no resets: Reliable humanoid behavior in the DARPA robotics challenge , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[195]  D. Wolpert,et al.  Principles of sensorimotor learning , 2011, Nature Reviews Neuroscience.

[196]  Katsu Yamane,et al.  Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[197]  Norman I. Badler,et al.  Animating human locomotion with inverse dynamics , 1996, IEEE Computer Graphics and Applications.

[198]  Ronald Poppe,et al.  Vision-based human motion analysis: An overview , 2007, Comput. Vis. Image Underst..

[199]  Michelle Karg,et al.  Movement Analysis of Rehabilitation Exercises: Distance Metrics for Measuring Patient Progress , 2016, IEEE Systems Journal.

[200]  Yasuo Kuniyoshi,et al.  Athlete Robot with applied human muscle activation patterns for bipedal running , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[201]  Chrystopher L. Nehaniv,et al.  Imitation with ALICE: learning to imitate corresponding actions across dissimilar embodiments , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[202]  Masayuki Inaba,et al.  Design Approach of Biologically-Inspired Musculoskeletal Humanoids , 2013 .

[203]  A. Kuo An optimal state estimation model of sensory integration in human postural balance , 2005, Journal of neural engineering.

[204]  Jimmy Or,et al.  Towards the Development of Emotional Dancing Humanoid Robots , 2009, Int. J. Soc. Robotics.

[205]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[206]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[207]  Katsushi Ikeuchi,et al.  Toward a Dancing Robot With Listening Capability: Keypose-Based Integration of Lower-, Middle-, and Upper-Body Motions for Varying Music Tempos , 2014, IEEE Transactions on Robotics.

[208]  C. Karen Liu,et al.  Online control of simulated humanoids using particle belief propagation , 2015, ACM Trans. Graph..

[209]  C. Oatis,et al.  The use of a mechanical model to describe the stiffness and damping characteristics of the knee joint in healthy adults. , 1993, Physical therapy.

[210]  Emanuel Todorov,et al.  Physically consistent state estimation and system identification for contacts , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[211]  R DRILLIS,et al.  BODY SEGMENT PARAMETERS; A SURVEY OF MEASUREMENT TECHNIQUES. , 1964, Artificial limbs.

[212]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[213]  Tomomichi Sugihara,et al.  Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt Method , 2011, IEEE Transactions on Robotics.

[214]  Katja D. Mombaur,et al.  Synthesis of full-body 3-D human gait using optimal control methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[215]  Yoshihiko Nakamura,et al.  Dynamics Computation of MusculoSkeletal Human Model Based on E cient Algorithm for Closed Kinematic Chains , 2003 .

[216]  Christopher Lee,et al.  PETMAN : A Humanoid Robot for Testing Chemical Protective Clothing (特集 2足歩行ロボット技術) , 2012 .

[217]  Eiichi Yoshida,et al.  Model preview control in multi-contact motion-application to a humanoid robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[218]  Nikolaos G. Tsagarakis,et al.  The mechatronic design of the new legs of the iCub robot , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[219]  Olivier Stasse,et al.  Whole-body model-predictive control applied to the HRP-2 humanoid , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[220]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, ACM Trans. Graph..

[221]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[222]  Antonis A. Argyros,et al.  Efficient model-based 3D tracking of hand articulations using Kinect , 2011, BMVC.

[223]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[224]  Claire L. Roether,et al.  Critical features for the perception of emotion from gait. , 2009, Journal of vision.

[225]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[226]  P. Guertin The mammalian central pattern generator for locomotion , 2009, Brain Research Reviews.

[227]  Mikio Sato,et al.  Coupled drive of the multi-DOF robot , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[228]  Masayuki Inaba,et al.  Development of muscle-driven flexible-spine humanoids , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[229]  Richard R Neptune,et al.  Modular control of human walking: a simulation study. , 2009, Journal of biomechanics.

[230]  Bernd Henze,et al.  Posture and balance control for humanoid robots in multi-contact scenarios based on Model Predictive Control , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[231]  Gentiane Venture,et al.  Dynamic parameters identification of a humanoid robot using joint torque sensors and/or contact forces , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[232]  Stefano Panzeri,et al.  Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives , 2013, Front. Comput. Neurosci..

[233]  D. Reinkensmeyer,et al.  Review of control strategies for robotic movement training after neurologic injury , 2009, Journal of NeuroEngineering and Rehabilitation.

[234]  Shigeki Sugano,et al.  Design of human symbiotic robot TWENDY-ONE , 2009, 2009 IEEE International Conference on Robotics and Automation.

[235]  Guy Bessonnet,et al.  Optimal Gait Synthesis of a Seven-Link Planar Biped , 2004, Int. J. Robotics Res..

[236]  Kenichi Narioka,et al.  Development of whole-body humanoid “pneumat-BS” with pneumatic musculoskeletal system , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[237]  Jun Morimoto,et al.  Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[238]  Ansgar Büschges,et al.  Controlling legs for locomotion—insights from robotics and neurobiology , 2015, Bioinspiration & biomimetics.

[239]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[240]  Alin Albu-Schaffer,et al.  Soft robotics , 2008, IEEE Robotics Autom. Mag..

[241]  M. Goldfarb,et al.  Control of Stair Ascent and Descent With a Powered Transfemoral Prosthesis , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[242]  Gentiane Venture,et al.  Recognizing Emotions Conveyed by Human Gait , 2014, International Journal of Social Robotics.

[243]  Justin Manzo,et al.  The DARPA Robotics Challenge [Competitions] , 2013, IEEE Robotics Autom. Mag..

[244]  Malte Bellmann,et al.  Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation. , 2012, Archives of physical medicine and rehabilitation.

[245]  Kai Henning Koch,et al.  Learning movement primitives from optimal and dynamically feasible trajectories for humanoid walking , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[246]  Jan Peters,et al.  Model learning for robot control: a survey , 2011, Cognitive Processing.

[247]  Dimitris N. Metaxas,et al.  Recursive dynamics and optimal control techniques for human motion planning , 1999, Proceedings Computer Animation 1999.

[248]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[249]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[250]  Homayoon Kazerooni,et al.  Exoskeletons for Human Performance Augmentation , 2008, Springer Handbook of Robotics.

[251]  Dana Kulic,et al.  Monitoring the segment parameters during long term physical training from motion capture data , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[252]  Aude Billard,et al.  Using reinforcement learning to adapt an imitation task , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[253]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[254]  Wulfram Gerstner,et al.  Neuronal Dynamics: From Single Neurons To Networks And Models Of Cognition , 2014 .

[255]  Stephan Dempe,et al.  Necessary optimality conditions for bilevel set optimization problems , 2007, J. Glob. Optim..

[256]  Rob Knight,et al.  ECCE1: The first of a series of anthropomimetic musculoskeletal upper torsos , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[257]  Lynne Baillie,et al.  The Development and Evaluation of an Interactive System for Age Related Musculoskeletal Rehabilitation in the Home , 2013, INTERACT.

[258]  Masayuki Inaba,et al.  The design and control of the flexible spine of a fully tendon-driven humanoid "Kenta" , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[259]  Martin Buss,et al.  Towards an autonomous, humanoid, and dynamically walking robot: modeling, optimal trajectory planning, hardware architecture, and experiments , 2003 .

[260]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[261]  Marc Toussaint,et al.  Understanding the geometry of workspace obstacles in Motion Optimization , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[262]  Dana Kulic,et al.  A constrained Extended Kalman Filter for dynamically consistent inverse kinematics and inertial parameters identification , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[263]  Oskar von Stryk,et al.  Concept and Design of the BioBiped1 Robot for Human-like Walking and Running , 2011, Int. J. Humanoid Robotics.

[264]  Tamim Asfour,et al.  Analyzing whole-body pose transitions in multi-contact motions , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[265]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[266]  D. Roetenberg,et al.  Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors , 2009 .

[267]  M. Steinbach Optimal Motion Design Using Inverse Dynamics. , 1997 .

[268]  Dana Kulic,et al.  Incremental learning of full body motion primitives and their sequencing through human motion observation , 2012, Int. J. Robotics Res..

[269]  Ayman Habib,et al.  OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement , 2007, IEEE Transactions on Biomedical Engineering.

[270]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[271]  M. Pandy,et al.  The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models , 2000, Computer methods in biomechanics and biomedical engineering.

[272]  Hugh Herr,et al.  Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. , 2009, Journal of rehabilitation research and development.

[273]  Hartmut Witte,et al.  ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. , 2002, Journal of biomechanics.

[274]  Katsu Yamane,et al.  Practical kinematic and dynamic calibration methods for force-controlled humanoid robots , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[275]  J. Dowling,et al.  Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. , 2003, Journal of biomechanical engineering.

[276]  Atsushi Nakazawa,et al.  Learning from Observation Paradigm: Leg Task Models for Enabling a Biped Humanoid Robot to Imitate Human Dances , 2007, Int. J. Robotics Res..

[277]  L. Chèze,et al.  Adjustments to McConville et al. and Young et al. body segment inertial parameters. , 2007, Journal of Biomechanics.

[278]  Libin Liu,et al.  Learning reduced-order feedback policies for motion skills , 2015, Symposium on Computer Animation.