Place cells, grid cells, and the brain's spatial representation system.

More than three decades of research have demonstrated a role for hippocampal place cells in representation of the spatial environment in the brain. New studies have shown that place cells are part of a broader circuit for dynamic representation of self-location. A key component of this network is the entorhinal grid cells, which, by virtue of their tessellating firing fields, may provide the elements of a path integration-based neural map. Here we review how place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory. Because these cell types have some of the most conspicuous behavioral correlates among neurons in nonsensory cortical systems, and because their spatial firing structure reflects computations internally in the system, studies of entorhinal-hippocampal representations may offer considerable insight into general principles of cortical network dynamics.

[1]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[2]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[3]  John S. Brlow Inertial navigation as a basis for animal navigation , 1964 .

[4]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[5]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[6]  J. Ritter,et al.  [Chemodifferentiation of the hippocampus formation in the postnatal development of albino rats. II. Transmitter enzymes]. , 1971, Journal fur Hirnforschung.

[7]  G. Lynch,et al.  Development of cholinergic innervation in the hippocampal formation of the rat. I. Histochemical demonstration of acetylcholinesterase activity. , 1974, Developmental biology.

[8]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[9]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[11]  A. J. Hill First occurrence of hippocampal spatial firing in a new environment , 1978, Experimental Neurology.

[12]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[14]  R. Sutherland,et al.  A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. , 1983, Behavioral neuroscience.

[15]  D. Amaral,et al.  A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus , 1986, The Journal of comparative neurology.

[16]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[17]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[19]  R. Kesner,et al.  Role of the posterior parietal association cortex in the processing of spatial event information. , 1988, Behavioral neuroscience.

[20]  R. Sutherland,et al.  Contributions of cingulate cortex to two forms of spatial learning and memory , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. Kesner,et al.  Role of the posterior parietal association cortex in the processing of spatial event information. , 1988, Behavioral neuroscience.

[22]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[23]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[24]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[25]  R. Muller,et al.  The firing of hippocampal place cells in the dark depends on the rat's recent experience , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[27]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[29]  L. Nadel The hippocampus and space revisited , 1991, Hippocampus.

[30]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[32]  B. McNaughton,et al.  Spatial selectivity of unit activity in the hippocampal granular layer , 1993, Hippocampus.

[33]  R. Hampson,et al.  Hippocampal cell firing correlates of delayed-match-to-sample performance in the rat. , 1993, Behavioral neuroscience.

[34]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[35]  A. Alonso,et al.  Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. , 1993, Journal of neurophysiology.

[36]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[37]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  H. Eichenbaum,et al.  Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[40]  M. Hasselmo,et al.  Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3 , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Taube Place cells recorded in the parasubiculum of freely moving rats , 1995, Hippocampus.

[42]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Terrence J. Sejnowski,et al.  ASSOCIATIVE MEMORY AND HIPPOCAMPAL PLACE CELLS , 1995 .

[44]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[45]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[47]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[48]  J. D. McGaugh,et al.  Inactivation of Hippocampus or Caudate Nucleus with Lidocaine Differentially Affects Expression of Place and Response Learning , 1996, Neurobiology of Learning and Memory.

[49]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[50]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[51]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[52]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[53]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[54]  K. I. Blum,et al.  Impaired Hippocampal Representation of Space in CA1-Specific NMDAR1 Knockout Mice , 1996, Cell.

[55]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[56]  R. Muller,et al.  Failure of Centrally Placed Objects to Control the Firing Fields of Hippocampal Place Cells , 1997, The Journal of Neuroscience.

[57]  H. Eichenbaum,et al.  Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli , 1997, Hippocampus.

[58]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[59]  N. Takahashi,et al.  Pure topographic disorientation due to right retrosplenial lesion , 1997, Neurology.

[60]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. Tulving,et al.  Episodic and declarative memory: Role of the hippocampus , 1998, Hippocampus.

[62]  R. Muller,et al.  Place cell discharge is extremely variable during individual passes of the rat through the firing field. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[64]  Alessandro Treves,et al.  Attractor neural networks storing multiple space representations: A model for hippocampal place fields , 1998, cond-mat/9807101.

[65]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[66]  C Kentros,et al.  Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. , 1998, Science.

[67]  J. Taube Head direction cells and the neurophysiological basis for a sense of direction , 1998, Progress in Neurobiology.

[68]  David Wood,et al.  Luddites must not block progress in genetics , 1999, Nature.

[69]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[70]  C. I. Connolly,et al.  Building neural representations of habits. , 1999, Science.

[71]  S. Mizumori,et al.  Retrosplenial cortex inactivation selectively impairs navigation in darkness. , 1999, Neuroreport.

[72]  E. Rolls Spatial view cells and the representation of place in the primate hippocampus , 1999, Hippocampus.

[73]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[74]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[75]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[76]  A. Fenton,et al.  Understanding hippocampal activity by using purposeful behavior: place navigation induces place cell discharge in both task-relevant and task-irrelevant spatial reference frames. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Lisman,et al.  Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. , 2000, Journal of neurophysiology.

[78]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[79]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[80]  Arne D. Ekstrom,et al.  Dynamics of Hippocampal Ensemble Activity Realignment: Time versus Space , 2000, The Journal of Neuroscience.

[81]  Arne D. Ekstrom,et al.  NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal “Place Fields” , 2001, Neuron.

[82]  E. Save,et al.  Dissociation of the effects of bilateral lesions of the dorsal hippocampus and parietal cortex on path integration in the rat. , 2001, Behavioral neuroscience.

[83]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[84]  P. Lánský,et al.  Properties of the extra-positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing , 2002, Neuroscience.

[85]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[86]  M. Fyhn,et al.  Hippocampal Neurons Responding to First-Time Dislocation of a Target Object , 2002, Neuron.

[87]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[88]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[89]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[90]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[91]  A. Berthoz,et al.  Development of spatial firing in the hippocampus of young rats , 2002, Hippocampus.

[92]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[93]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[94]  M. Lengyel,et al.  Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing , 2003, Hippocampus.

[95]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[96]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[97]  E. Maguire,et al.  The Well-Worn Route and the Path Less Traveled Distinct Neural Bases of Route Following and Wayfinding in Humans , 2003, Neuron.

[98]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[99]  Carol A. Barnes,et al.  Head-direction cells in the rat posterior cortex , 1994, Experimental Brain Research.

[100]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[101]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[102]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[103]  J. O’Keefe,et al.  Single unit activity in the rat hippocampus during a spatial memory task , 2004, Experimental Brain Research.

[104]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[105]  E. Save,et al.  Evidence for entorhinal and parietal cortices involvement in path integration in the rat , 2004, Experimental Brain Research.

[106]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[107]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[108]  M. Witter CHAPTER 21 – Hippocampal Formation , 2004 .

[109]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[110]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[111]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[112]  B. McNaughton,et al.  Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge , 2004, Experimental Brain Research.

[113]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[114]  May-Britt Moser,et al.  Place cells, spatial maps and the population code for memory , 2005, Current Opinion in Neurobiology.

[115]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[116]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[117]  E. Callaway A molecular and genetic arsenal for systems neuroscience , 2005, Trends in Neurosciences.

[118]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[119]  B. McNaughton,et al.  Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience , 2005, Hippocampus.

[120]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[121]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[122]  G. Buzsáki,et al.  Spike phase precession persists after transient intrahippocampal perturbation , 2005, Nature Neuroscience.

[123]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[124]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[125]  D. Sagi,et al.  Dynamics of Memory Representations in Networks with Novelty-Facilitated Synaptic Plasticity , 2006, Neuron.

[126]  E. Moser,et al.  Spatial representation and the architecture of the entorhinal cortex , 2006, Trends in Neurosciences.

[127]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[128]  J. O’Neill,et al.  Place-Selective Firing of CA1 Pyramidal Cells during Sharp Wave/Ripple Network Patterns in Exploratory Behavior , 2006, Neuron.

[129]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[130]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[131]  Simon M Stringer,et al.  Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning , 2006, Network.

[132]  M. Moser,et al.  Fast rate coding in hippocampal CA3 cell ensembles , 2006, Hippocampus.

[133]  D. Nitz Tracking Route Progression in the Posterior Parietal Cortex , 2006, Neuron.

[134]  Yoram Burak,et al.  Do We Understand the Emergent Dynamics of Grid Cell Activity? , 2006, The Journal of Neuroscience.

[135]  M. Shapiro,et al.  Representing episodes in the mammalian brain , 2006, Current Opinion in Neurobiology.

[136]  Sean M Montgomery,et al.  Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations , 2006, Neuron.

[137]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[138]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[139]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[140]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[141]  H. T. Blair,et al.  Scale-Invariant Memory Representations Emerge from Moiré Interference between Grid Fields That Produce Theta Oscillations: A Computational Model , 2007, The Journal of Neuroscience.

[142]  B. Sakmann,et al.  Differential responses of hippocampal subfields to cortical up–down states , 2007, Proceedings of the National Academy of Sciences.

[143]  E. Moser,et al.  Enigmas of the Dentate Gyrus , 2007, Neuron.

[144]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[145]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[146]  N. Ulanovsky,et al.  Hippocampal cellular and network activity in freely moving echolocating bats , 2007, Nature Neuroscience.

[147]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[148]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[149]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[150]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[151]  D. Tervo,et al.  Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo , 2007, Current Opinion in Neurobiology.

[152]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[153]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[154]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[155]  Steven W. Flavell,et al.  Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. , 2008, Annual review of neuroscience.

[156]  D. Amaral,et al.  The Hippocampal Formation , 2009 .