Distance-Optimal Navigation in an Unknown Environment Without Sensing Distances

This paper considers what can be accomplished using a mobile robot that has limited sensing. For navigation and mapping, the robot has only one sensor, which tracks the directions of depth discontinuities. There are no coordinates, and the robot is given a motion primitive that allows it to move toward discontinuities. The robot is incapable of performing localization or measuring any distances or angles. Nevertheless, when dropped into an unknown planar environment, the robot builds a data structure, called the gap navigation tree, which enables it to navigate optimally in terms of Euclidean distance traveled. In a sense, the robot is able to learn the critical information contained in the classical shortest-path roadmap, although surprisingly it is unable to extract metric information. We prove these results for the case of a point robot placed into a simply connected, piecewise-analytic planar environment. The case of multiply connected environments is also addressed, in which it is shown that further sensing assumptions are needed. Due to the limited sensor given to the robot, globally optimal navigation is impossible; however, our approach achieves locally optimal (within a homotopy class) navigation, which is the best that is theoretically possible under this robot model.

[1]  G. Swaminathan Robot Motion Planning , 2006 .

[2]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[3]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[4]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[5]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[6]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[7]  Gaurav S. Sukhatme,et al.  Incremental online topological map building with a mobile robot , 1999, Optics East.

[8]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[9]  Mihalis Yannakakis,et al.  Shortest Paths Without a Map , 1989, Theor. Comput. Sci..

[10]  Frédo Durand,et al.  3d visibility: analytical study and applications , 1999 .

[11]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[12]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[13]  Wolfram Burgard,et al.  Probabilistic mapping of an environment by a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  Steven M. LaValle,et al.  Pursuit-evasion in an unknown environment using gap navigation trees , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[16]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[17]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[18]  Bernhard Nebel,et al.  RFID Technology-based Exploration and SLAM for Search And Rescue , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[20]  Steven M. LaValle,et al.  Locally-optimal navigation in multiply-connected environments without geometric maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[21]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[22]  Leonidas J. Guibas,et al.  Visibility Queries in Simple Polygons and Applications , 1998, ISAAC.

[23]  Steven M. LaValle,et al.  Optimal navigation and object finding without geometric maps or localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  Amitava Datta,et al.  Competitive searching in a generalized street , 1994, SCG '94.

[25]  Gregory Dudek,et al.  Multi-robot collaboration for robust exploration , 2004, Annals of Mathematics and Artificial Intelligence.

[26]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion in an Unknown Planar Environment , 2004, Int. J. Robotics Res..

[27]  J. Koenderink,et al.  The singularities of the visual mapping , 1976, Biological Cybernetics.

[28]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[29]  Michel Devy,et al.  Incremental construction of a landmark-based and topological model of indoor environments by a mobile robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[30]  Steven M. LaValle,et al.  Gap Navigation Trees: Minimal Representation for Visibility-based Tasks , 2004, WAFR.

[31]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[32]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[33]  Howie Choset,et al.  Sensor Based Planing, Part I: The Generalized Voronoi Graph , 1995, ICRA.

[34]  Kevin W. Bowyer,et al.  Aspect graphs: An introduction and survey of recent results , 1990, Int. J. Imaging Syst. Technol..

[35]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[36]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[37]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[38]  Steven M. LaValle,et al.  A pursuit-evasion BUG algorithm , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[39]  Larry H. Matthies,et al.  Integration of sonar and stereo range data using a grid-based representation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[40]  Gregory Dudek,et al.  Using Local Information in a Non-Local Way for Mapping Graph-Like Worlds , 1993, IJCAI.

[41]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 2001, IEEE Trans. Robotics Autom..

[42]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[43]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[44]  T. M. Murali,et al.  Planning Robot Motion Strategies for Efficient Model Construction , 2000 .

[45]  Gregory Dudek,et al.  Localizing a robot with minimum travel , 1995, SODA '95.