A hierarchical path planning approach based on A⁎ and least-squares policy iteration for mobile robots

[1]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.

[2]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[3]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Léonard Jaillet,et al.  Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds , 2013, IEEE Transactions on Robotics.

[6]  Haibo He,et al.  Online Learning Control Using Adaptive Critic Designs With Sparse Kernel Machines , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[7]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[8]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[9]  Kostas E. Bekris,et al.  Sampling-based roadmap of trees for parallel motion planning , 2005, IEEE Transactions on Robotics.

[10]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[11]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[12]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[13]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[14]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[15]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[16]  Steven J. Bradtke,et al.  Linear Least-Squares algorithms for temporal difference learning , 2004, Machine Learning.

[17]  Ian Postlethwaite,et al.  A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees , 2013, J. Intell. Robotic Syst..

[18]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[19]  Jing Ren,et al.  Modified Newton's method applied to potential field-based navigation for mobile robots , 2006, IEEE Transactions on Robotics.

[20]  Paul Newman,et al.  Risky Planning on Probabilistic Costmaps for Path Planning in Outdoor Environments , 2013, IEEE Transactions on Robotics.

[21]  Amit Konar,et al.  A Deterministic Improved Q-Learning for Path Planning of a Mobile Robot , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[22]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[23]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[24]  Yide Ma,et al.  Self-adaptive autowave pulse-coupled neural network for shortest-path problem , 2013, Neurocomputing.

[25]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[26]  Nidhi Kalra,et al.  Incremental reconstruction of generalized Voronoi diagrams on grids , 2009, Robotics Auton. Syst..

[27]  Keum Shik Hong,et al.  A Path-Planning Algorithm Using Vector Potential Functions in Triangular Regions , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[28]  Jianhua Zhang,et al.  Robot path planning in uncertain environment using multi-objective particle swarm optimization , 2013, Neurocomputing.

[29]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[30]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[31]  Hanan Samet,et al.  A hierarchical strategy for path planning among moving obstacles [mobile robot] , 1989, IEEE Trans. Robotics Autom..

[32]  Shuzhi Sam Ge,et al.  New potential functions for mobile robot path planning , 2000, IEEE Trans. Robotics Autom..

[33]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[34]  Michail G. Lagoudakis,et al.  Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..

[35]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[36]  Narendra Ahuja,et al.  An analytically tractable potential field model of free space and its application in obstacle avoidance , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Simon X. Yang,et al.  Hierarchical Approximate Policy Iteration With Binary-Tree State Space Decomposition , 2011, IEEE Transactions on Neural Networks.

[38]  Xiaoyu Yang,et al.  A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[40]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[41]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[42]  Zhang Yi,et al.  Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[43]  Abdullah Al Mamun,et al.  Hierarchical Incremental Path Planning and Situation-Dependent Optimized Dynamic Motion Planning Considering Accelerations , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).