On soft predicates in subdivision motion planning

We propose to design new algorithms for motion planning problems using the well-known Domain Subdivision paradigm, coupled with "soft" predicates. Unlike the traditional exact predicates in computational geometry, our primitives are only exact in the limit. We introduce the notion of resolution-exact algorithms in motion planning: such an algorithm has an "accuracy" constant K 1 , and takes an arbitrary input "resolution" parameter e 0 such that: if there is a path with clearance Ke, it will output a path with clearance e / K ; if there are no paths with clearance e / K , it reports "NO PATH". Besides the focus on soft predicates, our framework also admits a variety of global search strategies including forms of the A* search and probabilistic search.Our algorithms are theoretically sound, practical, easy to implement, without implementation gaps, and have adaptive complexity. Our deterministic and probabilistic strategies avoid the Halting Problem of current probabilistically complete algorithms. We develop the first provably resolution-exact algorithms for motion-planning problems in SE ( 2 ) = R 2 i? S 1 . To validate this approach, we implement our algorithms and the experiments demonstrate the efficiency of our approach, even compared to probabilistic algorithms.

[1]  Chee-Keng Yap,et al.  Robust Geometric Computation , 2016, Encyclopedia of Algorithms.

[2]  Dinesh Manocha,et al.  Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning , 2005, Robotics: Science and Systems.

[3]  Micha Sharir,et al.  Generalized Voronoi diagrams for a ladder: II. Efficient construction of the diagram , 2018, Algorithmica.

[4]  Kostas E. Bekris,et al.  OOPS for Motion Planning: An Online, Open-source, Programming System , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[5]  Felix Krahmer,et al.  SqFreeEVAL: An (almost) optimal real-root isolation algorithm , 2011, J. Symb. Comput..

[6]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[7]  Chee-Keng Yap,et al.  In Praise of Numerical Computation , 2009, Efficient Algorithms.

[8]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[9]  Michael Sagraloff,et al.  When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.

[10]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[11]  Chee Yap Soft subdivision search in motion planning , 2013 .

[12]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[13]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[14]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[15]  Chee-Keng Yap,et al.  A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.

[16]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[17]  Chee-Keng Yap,et al.  Near optimal tree size bounds on a simple real root isolation algorithm , 2012, ISSAC.

[18]  Dan Halperin,et al.  Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Point-Location , 2010, ESA.

[19]  Dinesh Manocha,et al.  Efficient Cell Labelling and Path Non-existence Computation using C-obstacle Query , 2008, Int. J. Robotics Res..

[20]  Micha Sharir,et al.  Generalized Voronoi Diagrams for Moving a Ladder: I. Topological Analysis , 2015 .

[21]  Chee-Keng Yap,et al.  Continuous Amortization: A Non-Probabilistic Adaptive Analysis Technique , 2009, Electron. Colloquium Comput. Complex..

[22]  Dinesh Manocha,et al.  Accurate Minkowski sum approximation of polyhedral models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[23]  Seth Hutchinson,et al.  Toward an exact incremental geometric robot motion planner , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[24]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[25]  Dinesh Manocha,et al.  Topology preserving surface extraction using adaptive subdivision , 2004, SGP '04.

[26]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[27]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[28]  Chee-Keng Yap,et al.  Towards exact numerical Voronoi diagrams , 2012, 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering.

[29]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Bruce Randall Donald,et al.  Provably good approximation algorithms for optimal kinodynamic planning: Robots with decoupled dynamics bounds , 1995, Algorithmica.

[31]  John F. Canny,et al.  Computing Roadmaps of General Semi-Algebraic Sets , 1991, Comput. J..

[32]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[33]  Dan Halperin,et al.  Motion Planning via Manifold Samples , 2011, ESA.

[34]  Chee-Keng Yap,et al.  Robust Geometric Computation , 2016, Encyclopedia of Algorithms.

[35]  Jean-Claude Latombe,et al.  Motion planning for legged and humanoid robots , 2008 .

[36]  Hongyan Wang,et al.  Nonuniform Discretization for Kinodynamic Motion Planning and its Applications , 2000, SIAM J. Comput..

[37]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[38]  Matthew T. Mason,et al.  Robot Motion: Planning and Control , 1983 .

[39]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[40]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[41]  Seth Hutchinson,et al.  Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees , 1995, IEEE Trans. Robotics Autom..

[42]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[43]  Ee-Chien Chang,et al.  Shortest path amidst disc obstacles is computable , 2005, Int. J. Comput. Geom. Appl..