Polynomial time algorithms in invariant theory for torus actions

An action of a group on a vector space partitions the latter into a set of orbits. We consider three natural and useful algorithmic "isomorphism" or "classification" problems, namely, orbit equality, orbit closure intersection, and orbit closure containment. These capture and relate to a variety of problems within mathematics, physics and computer science, optimization and statistics. These orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen significant progress in recent years. In this paper, we initiate a study of these problems by focusing on the actions of commutative groups (namely, tori). We explain how this setting is motivated from questions in algebraic complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While the structural theory of commutative actions is well understood, no general efficient algorithms were known for the aforementioned problems. Our main results are polynomial time algorithms for all three problems. We also show how to efficiently find separating invariants for orbits, and how to compute systems of generating rational invariants for these actions (in contrast, for polynomial invariants the latter is known to be hard). Our techniques are based on a combination of fundamental results in invariant theory, linear programming, and algorithmic lattice theory.

[1]  Peter Bürgisser,et al.  Interior-point methods for unconstrained geometric programming and scaling problems , 2020, ArXiv.

[2]  Harm Derksen,et al.  An exponential lower bound for the degrees of invariants of cubic forms and tensor actions , 2019, Advances in Mathematics.

[3]  Avi Wigderson,et al.  Operator Scaling: Theory and Applications , 2015, Found. Comput. Math..

[4]  Markus Bläser,et al.  Variety Membership Testing, Algebraic Natural Proofs, and Geometric Complexity Theory , 2019, ArXiv.

[5]  Peter Bürgisser,et al.  Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Maps and Polytopes , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Avi Wigderson,et al.  Search problems in algebraic complexity, GCT, and hardness of generators for invariant rings , 2020, CCC.

[7]  Avi Wigderson,et al.  Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties) , 2019, Electron. Colloquium Comput. Complex..

[8]  Nick Ryder Combinatorial and Algorithmic Aspects of Hyperbolic Polynomials , 2019 .

[9]  Avi Wigderson,et al.  Efficient Algorithms for Tensor Scaling, Quantum Marginals, and Moment Polytopes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[10]  Avi Wigderson,et al.  Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing , 2018, STOC.

[11]  Harm Derksen,et al.  Algorithms for orbit closure separation for invariants and semi-invariants of matrices , 2018, ArXiv.

[12]  Peter Bürgisser,et al.  Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory , 2017, ITCS.

[13]  Harm Derksen,et al.  Degree bounds for semi-invariant rings of quivers , 2016, Journal of Pure and Applied Algebra.

[14]  Youming Qiao,et al.  Constructive non-commutative rank computation is in deterministic polynomial time , 2015, computational complexity.

[15]  Aleksander Madry,et al.  Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Michael Walter,et al.  Membership in Moment Polytopes is in NP and coNP , 2015, SIAM J. Comput..

[17]  Michael Walter,et al.  On vanishing of Kronecker coefficients , 2015, computational complexity.

[18]  Harm Derksen,et al.  Generating invariant rings of quivers in arbitrary characteristic , 2016, 1610.06617.

[19]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[21]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[22]  Kousha Etessami,et al.  A Note on the Complexity of Comparing Succinctly Represented Integers, with an Application to Maximum Probability Parsing , 2013, TOCT.

[23]  Nathan Linial,et al.  On the Vertices of the d-Dimensional Birkhoff Polytope , 2012, Discret. Comput. Geom..

[24]  George Labahn,et al.  Scaling Invariants and Symmetry Reduction of Dynamical Systems , 2013, Found. Comput. Math..

[25]  Amir Shpilka,et al.  Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing , 2013, APPROX-RANDOM.

[26]  Harm Derksen,et al.  The Graph Isomorphism Problem and approximate categories , 2010, J. Symb. Comput..

[27]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Efficient algorithms for Noether Normalization , 2012 .

[28]  Eugene M. Luks,et al.  Testing isomorphism of modules , 2008 .

[29]  Vladimir L. Popov,et al.  Two Orbits: When is one in the closure of the other? , 2008, 0808.2735.

[30]  Bernd Sturmfels,et al.  Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .

[31]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[32]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[33]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[34]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[35]  L. Gurvits Combinatorial and algorithmic aspects of hyperbolic polynomials , 2004, Electron. Colloquium Comput. Complex..

[36]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[37]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[38]  Arnaud Durand,et al.  On the complexity of recognizing the Hilbert basis of a linear diophantine system , 2002, Theor. Comput. Sci..

[39]  David B. Leep,et al.  MARRIAGE, MAGIC, AND SOLITAIRE , 1999 .

[40]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[41]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[42]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[43]  David Mumford,et al.  Geometric invariant theory, Third Edition , 1994, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[44]  Guoqiang Ge Testing equalities of multiplicative representations in polynomial time , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[45]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[46]  David L. Wehlau,et al.  Constructive invariant theory for tori , 1993 .

[47]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[48]  M. Audin Torus Actions on Symplectic Manifolds , 1991 .

[49]  Jeffrey Shallit,et al.  Factor refinement , 1993, SODA '90.

[50]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[51]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[52]  D. Mumford The red book of varieties and schemes , 1988 .

[53]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[54]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[55]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[56]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[57]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[58]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[59]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[60]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[61]  H. Weyl The Classical Groups , 1940 .

[62]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[63]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[64]  H. Smith I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.