Rearrangement planning using object-centric and robot-centric action spaces

This paper addresses the problem of rearrangement planning, i.e. to find a feasible trajectory for a robot that must interact with multiple objects in order to achieve a goal. We propose a planner to solve the rearrangement planning problem by considering two different types of actions: robot-centric and object-centric. Object-centric actions guide the planner to perform specific actions on specific objects. Robot-centric actions move the robot without object relevant intent, easily allowing simultaneous object contact and whole arm interaction. We formulate a hybrid planner that uses both action types. We evaluate the planner on tasks for a mobile robot and a household manipulator.

[1]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[2]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[3]  J. Laumond,et al.  Multi-Level Path Planning for Nonholonomic Robots using Semi-Holonomic Subsystems , 1996 .

[4]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[5]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[6]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Thierry Siméon,et al.  Mobility analysis for feasibility studies in CAD models of industrial environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[9]  James J. Kuffner,et al.  Navigation among movable obstacles: real-time reasoning in complex environments , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[10]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[11]  Tamim Asfour,et al.  Manipulation Planning Among Movable Obstacles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  Manuela M. Veloso,et al.  CMDragons: Dynamic passing and strategy on a champion robot soccer team , 2008, 2008 IEEE International Conference on Robotics and Automation.

[13]  Victor Ng-Thow-Hing,et al.  Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts , 2010, 2010 IEEE International Conference on Robotics and Automation.

[14]  Geoffrey A. Hollinger,et al.  HERB: a home exploring robotic butler , 2010, Auton. Robots.

[15]  S. Srinivasa,et al.  Push-grasping with dexterous hands: Mechanics and a method , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Leslie Pack Kaelbling,et al.  Manipulation with Multiple Action Types , 2012, ISER.

[17]  Siddhartha S. Srinivasa,et al.  A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty , 2012, Autonomous Robots.

[18]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[19]  Oussama Khatib,et al.  MOPL: A multi-modal path planner for generic manipulation tasks , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[20]  Siddhartha S. Srinivasa,et al.  Nonprehensile whole arm rearrangement planning on physics manifolds , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).