Enabling technologies for autonomous MAV operations

The utility of micro air vehicles (MAVs) has expanded significantly in the last decade, and there are now numerous commercial systems available at relatively low cost. This expansion has arisen mainly due to the miniaturisation of flight control systems and advances in energy storage and propulsion technologies. Several emerging applications involve routine operation of MAVs in complex urban environments such as parcel delivery, communications relay and environmental monitoring. However, MAVs currently rely on one or more operators-in-the-loop and, whilst desirable, full autonomous operation has not yet been achieved. In this review paper, autonomous MAV operation in complex environments is explored with conceptualisation for future MAV operation in urban environments. Limitations of current technologies are systematically examined through consideration of the state-of-the-art and future trends. The main limitations challenging the realisation of fully autonomous MAVs are mainly attributed to: computational power, communication and energy storage. These limitations lead to poor sensing and planning capabilities, which are essential components of autonomous MAVs. Possible solutions are explored with goal of enabling MAVs to reliably operate autonomously in urban environments.

[1]  Michael R. Benjamin,et al.  Autonomous Underwater Vehicles: Trends and Transformations , 2005 .

[2]  Luis Merino,et al.  Control and perception techniques for aerial robotics , 2003 .

[3]  Jing Chen,et al.  Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control , 2013 .

[4]  Vijay Kumar,et al.  Trajectory generation and control for precise aggressive maneuvers with quadrotors , 2012, Int. J. Robotics Res..

[5]  Fethi Belkhouche,et al.  Reactive Path Planning for 3-D Autonomous Vehicles , 2012, IEEE Transactions on Control Systems Technology.

[6]  Luther N. Jenkins,et al.  Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle , 2001 .

[7]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[8]  Kevin Henry,et al.  Development of a Micro Air Vehicle for Maximum Endurance and Minimum Size , 2003 .

[9]  Eric W. Frew,et al.  Networking Issues for Small Unmanned Aircraft Systems , 2009, J. Intell. Robotic Syst..

[10]  Farid Kendoul,et al.  Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems , 2012, J. Field Robotics.

[11]  Reece A. Clothier,et al.  A review of the concept of autonomy in the context of the safety regulation of civil unmanned aircraft systems. , 2013 .

[12]  R. Walker,et al.  The Smart Skies project , 2011, IEEE Aerospace and Electronic Systems Magazine.

[13]  Alessandro Gardi,et al.  Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context , 2016 .

[14]  T. Stoffregen,et al.  Control of a virtual vehicle influences postural activity and motion sickness. , 2011, Journal of experimental psychology. Applied.

[15]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[16]  Roland Siegwart,et al.  Motion‐ and Uncertainty‐aware Path Planning for Micro Aerial Vehicles , 2014, J. Field Robotics.

[17]  J. Cermák,et al.  Wind-tunnel measurements in the wakes of structures , 1977 .

[18]  Rogelio Lozano,et al.  An adaptive vision-based autopilot for mini flying machines guidance, navigation and control , 2009, Auton. Robots.

[19]  Ella M. Atkins,et al.  Aerodynamic sensing for a fixed wing UAS operating at high angles of attack , 2012 .

[20]  M Elbanhawi Randomised parameterisation motion planning for autonomous cars , 2016 .

[21]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[22]  Wen Li,et al.  High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes , 2014 .

[23]  Peter Corke,et al.  An Introduction to Inertial and Visual Sensing , 2007, Int. J. Robotics Res..

[24]  Simon Watkins,et al.  Development and Flight Testing of a Turbulence Mitigation System for Micro Air Vehicles , 2016, J. Field Robotics.

[25]  S. LaValle,et al.  Sampling-Based Motion Planning With Differential Constraints , 2005 .

[26]  Antonio C. M. Sousa,et al.  Prediction of building interference effects on pedestrian level comfort , 2002 .

[27]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[28]  Jonathan Rose,et al.  Measuring the Gap Between FPGAs and ASICs , 2007, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Duncan A. Campbell,et al.  Fuzzy Multi-Objective Mission Flight Planning in Unmanned Aerial Systems , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[30]  Jonghyuk Kim,et al.  Dual Optic-flow Integrated Navigation forSmall-scale Flying Robots , 2007 .

[31]  George K. I. Mann,et al.  Behavior-modulation technique in mobile robotics using fuzzy discrete event system , 2006, IEEE Transactions on Robotics.

[32]  Reece A. Clothier,et al.  Safety risk management of unmanned aircraft systems , 2015 .

[33]  Siu-Tsen Shen,et al.  HALO the Winning Entry to the DARPA UAVForge Challenge 2012 , 2013, HCI.

[34]  Milan Simic,et al.  Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas , 2014 .

[35]  Mehran Mesbahi,et al.  Deconfliction Algorithms for a Pair of Constant Speed Unmanned Aerial Vehicles , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Hugh F. Durrant-Whyte,et al.  Multisensor Data Fusion , 2016, Springer Handbook of Robotics, 2nd Ed..

[37]  Salah Sukkarieh,et al.  An Analytical Continuous-Curvature Path-Smoothing Algorithm , 2010, IEEE Transactions on Robotics.

[38]  Cezary Galinski Gust Resistant Fixed Wing Micro Air Vehicle , 2006 .

[39]  Jorge Pomares,et al.  A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing , 2014, Sensors.

[40]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[41]  Marc Carreras,et al.  A survey on coverage path planning for robotics , 2013, Robotics Auton. Syst..

[42]  Bruce Randall Donald,et al.  On the complexity of kinodynamic planning , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[43]  Robin R. Murphy,et al.  Disaster Robotics , 2014, Springer Handbook of Robotics, 2nd Ed..

[44]  Gökhan Inalhan,et al.  A probabilistic B-spline motion planning algorithm for unmanned helicopters flying in dense 3D environments , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Gianmarco Baldini,et al.  Survey of Wireless Communication Technologies for Public Safety , 2014, IEEE Communications Surveys & Tutorials.

[46]  Kenzo Nonami,et al.  Autonomous Flying Robots , 2010 .

[47]  Shengyong Chen,et al.  Active vision in robotic systems: A survey of recent developments , 2011, Int. J. Robotics Res..

[48]  Ruey-Hsun Liang,et al.  Optimal Driving Efficiency Design for the Single-Phase Brushless DC Fan Motor , 2010, IEEE Transactions on Magnetics.

[49]  Lance W. Traub,et al.  Range and Endurance Estimates for Battery-Powered Aircraft , 2011 .

[50]  R. Zbikowski,et al.  Some problems of micro air vehicles development , 2007 .

[51]  Liuping Wang,et al.  Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles , 2016 .

[52]  Glenn F. Wilson,et al.  Performance Enhancement in an Uninhabited Air Vehicle Task Using Psychophysiologically Determined Adaptive Aiding , 2007, Hum. Factors.

[53]  Mario G. Perhinschi,et al.  Development of a Modified Voronoi Algorithm for UAV Path Planning and Obstacle Avoidance , 2012 .

[54]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[55]  George J. Vachtsevanos,et al.  Inventing a Biologically Inspired, Energy Efficient Micro Aerial Vehicle , 2012, J. Intell. Robotic Syst..

[56]  Eric Monmasson,et al.  FPGAs in Industrial Control Applications , 2011, IEEE Transactions on Industrial Informatics.

[57]  Edoardo Charbon,et al.  System Tradeoffs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators , 2010, IEEE Transactions on Nuclear Science.

[58]  Robert J. Kerczewski,et al.  Frequency spectrum for integration of unmanned aircraft , 2013, 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC).

[59]  Yash Mulgaonkar,et al.  Autonomous charging to enable long-endurance missions for small aerial robots , 2014, Defense + Security Symposium.

[60]  Peter Lissaman,et al.  Effects of Turbulence on Bank Upsets of Small Flight Vehicles , 2009 .

[61]  Rogelio Lozano,et al.  A Vision and GPS-Based Real-Time Trajectory Planning for a MAV in Unknown and Low-Sunlight Environments , 2014, J. Intell. Robotic Syst..

[62]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[63]  William B. Blake,et al.  Framework for developing and evaluating MAV control algorithms in a realistic urban setting , 2005, Proceedings of the 2005, American Control Conference, 2005..

[64]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[65]  Mark F. Reeder,et al.  Flexible- and Rigid-Wing Micro Air Vehicle: Lift and Drag Comparison , 2006 .

[66]  David J. Cappelleri,et al.  Linear control design, allocation, and implementation for the Omnicopter MAV , 2013, 2013 IEEE International Conference on Robotics and Automation.

[67]  Alessandro Gardi,et al.  Airborne laser sensors and integrated systems , 2015 .

[68]  María José Moure,et al.  Features, Design Tools, and Application Domains of FPGAs , 2007, IEEE Transactions on Industrial Electronics.

[69]  Akashi Mochida,et al.  Prediction of wind environment and thermal comfort at pedestrian level in urban area , 2006 .

[70]  Anjan Chakrabarty,et al.  Flight Path Planning for UAV Atmospheric Energy Harvesting Using Heuristic Search , 2010 .

[71]  Tan Chang,et al.  Improving Electric Powered UAVs’ Endurance by Incorporating Battery Dumping Concept , 2015 .

[72]  Vijay Kumar,et al.  Opportunities and challenges with autonomous micro aerial vehicles , 2012, Int. J. Robotics Res..

[73]  P. Lissaman Wind Energy Extraction by Birds and Flight Vehicles , 2005 .

[74]  Christopher R. Baker,et al.  A reasoning framework for autonomous urban driving , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[75]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[76]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[77]  T. Hamel,et al.  A practical Visual Servo Control for a Unmanned Aerial Vehicle , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[78]  Reece A. Clothier,et al.  The attitude control of fixed-wing MAVS in turbulent environments , 2014 .

[79]  Sergey V Shkarayev,et al.  Introduction to the Design of Fixed-Wing Micro Air Vehicles: Including Three Case Studies , 2007 .

[80]  Nicholas Roy,et al.  Efficient planning under uncertainty for a target-tracking micro-aerial vehicle , 2010, 2010 IEEE International Conference on Robotics and Automation.

[81]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[82]  Adam M. Wickenheiser,et al.  The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[83]  Brian Fast,et al.  High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions , 2011 .

[84]  Hui-Min Huang,et al.  Autonomy levels for unmanned systems (ALFUS) framework: safety and application issues , 2007, PerMIS.

[85]  Pratap Tokekar,et al.  Energy‐efficient Path Planning for Solar‐powered Mobile Robots * , 2013, J. Field Robotics.

[86]  Hajime Asama,et al.  Inevitable collision states — a step towards safer robots? , 2004, Adv. Robotics.

[87]  Ehud Rivlin,et al.  Spline-Based Robot Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[88]  Takeo Kanade,et al.  Efficient Two-phase 3D Motion Planning for Small Fixed-wing UAVs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[89]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[90]  Alexander Zelinsky,et al.  Mobile robot map making using sonar , 1991, J. Field Robotics.

[91]  Matthew T. Keennon,et al.  Development of the Black Widow Micro Air Vehicle , 2001 .

[92]  Zhaodan Kong,et al.  A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance , 2010, J. Intell. Robotic Syst..

[93]  Milan Simic,et al.  Randomized Bidirectional B-Spline Parameterization Motion Planning , 2016, IEEE Transactions on Intelligent Transportation Systems.

[94]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[95]  Eva Besada-Portas,et al.  Evolutionary Trajectory Planner for Multiple UAVs in Realistic Scenarios , 2010, IEEE Transactions on Robotics.

[96]  Brian Y. Lattimer,et al.  Firefighting Robot Stereo Infrared Vision and Radar Sensor Fusion for Imaging through Smoke , 2015 .

[97]  Milan Simic,et al.  The Role of Path Continuity in Lateral Vehicle Control , 2015, KES.

[98]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[99]  Jan Steckel,et al.  BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar , 2013, PloS one.

[100]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[101]  Milan Simic,et al.  Improved manoeuvring of autonomous passenger vehicles: Simulations and field results , 2017 .

[102]  J. G. Hurdus,et al.  Behavioral programming with hierarchy and parallelism in the DARPA urban challenge and robocup , 2008 .

[103]  James F. Whidborne,et al.  Direct Method Based Control System for an Autonomous Quadrotor , 2010, J. Intell. Robotic Syst..

[104]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[105]  Alex Doboli,et al.  Cities of the Future: Employing Wireless Sensor Networks for Efficient Decision Making in Complex Environments , 2018, ArXiv.

[106]  Yu Huang,et al.  Very high energy density silicide–air primary batteries , 2013 .

[107]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[108]  Reece A. Clothier,et al.  Influence of Turbulence on MAV Roll Perturbations , 2014 .

[109]  William H. Snyder,et al.  A Comparison of Numerical and Physical Modeling of Stable Atmospheric Flow and Dispersion around a Cubical Building , 1996 .

[110]  Sridha Sridharan,et al.  Hand-held monocular SLAM in thermal-infrared , 2012, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV).

[111]  W. Frost,et al.  A field study of wind over a simulated block building , 1977 .

[112]  Sven Behnke,et al.  Obstacle detection and navigation planning for autonomous micro aerial vehicles , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[113]  Eun-Soo Kim,et al.  Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[114]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[115]  Nicolas H. Franceschini,et al.  Bio-inspired optic flow sensors based on FPGA: Application to Micro-Air-Vehicles , 2007, Microprocess. Microsystems.

[116]  Reece A. Clothier,et al.  Fixed-wing MAV attitude stability in atmospheric turbulence—Part 2: Investigating biologically-inspired sensors , 2014 .

[117]  Kazuya Yoshida,et al.  Collaborative mapping of an earthquake‐damaged building via ground and aerial robots , 2012, J. Field Robotics.

[118]  Timothy W. McLain,et al.  Energy Harvesting and Mission Effectiveness for Small Unmanned Aircraft , 2010 .

[119]  Franz Andert,et al.  Mapping and path planning in complex environments: An obstacle avoidance approach for an unmanned helicopter , 2011, 2011 IEEE International Conference on Robotics and Automation.

[120]  Salah Sukkarieh,et al.  3D smooth path planning for a UAV in cluttered natural environments , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[121]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[122]  David Anderson,et al.  An Evaluation of Current and Future Costs for Lithium-Ion Batteries for Use in Electrified Vehicle Powertrains , 2009 .

[123]  Sebastian Scherer,et al.  Sparse Tangential Network (SPARTAN): Motion planning for micro aerial vehicles , 2013, 2013 IEEE International Conference on Robotics and Automation.

[124]  Anthony Stentz Optimal and Efficient Path Planning for Unknown and Dynamic Environments , 1993 .

[125]  Pascal Lorenz,et al.  Wireless communication technologies for ITS applications [Topics in Automotive Networking] , 2010, IEEE Communications Magazine.

[126]  Graham Wild,et al.  Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters , 2016 .

[127]  Nicholas Roy,et al.  Enabling New Missions for Robotic Aircraft , 2009, Science.

[128]  Yim-Fun Hu,et al.  A snake-based scheme for path planning and control with constraints by distributed visual sensors , 2013, Robotica.

[129]  Jinguo Liu,et al.  Evaluation methods for the autonomy of unmanned systems , 2012 .

[130]  Russell Tessier,et al.  FPGA Architecture: Survey and Challenges , 2008, Found. Trends Electron. Des. Autom..

[131]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[132]  Reece A. Clothier,et al.  Full-scale flow measurement on a tall building with a continuous-wave Doppler Lidar anemometer , 2016 .

[133]  Ian Postlethwaite,et al.  A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees , 2013, J. Intell. Robotic Syst..

[134]  Frank Ortmeier,et al.  Model-Based Local Path Planning for UAVs , 2015, J. Intell. Robotic Syst..

[135]  Roland Siegwart,et al.  Autonomous miniature flying robots: coming soon! - Research, Development, and Results , 2007, IEEE Robotics & Automation Magazine.

[136]  Leonidas J. Guibas,et al.  Visibility-polygon search and euclidean shortest paths , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[137]  Dries Verstraete,et al.  Performance of a hybrid, fuel-cell-based power system during simulated small unmanned aircraft missions , 2016 .

[138]  Milan Simic,et al.  Sampling-Based Robot Motion Planning: A Review , 2014, IEEE Access.

[139]  Sejin Kwon,et al.  Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[140]  Emilio Frazzoli,et al.  Massively parallelizing the RRT and the RRT , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[141]  E. Skafidas,et al.  A 60-GHz transceiver on CMOS , 2008, 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference.

[142]  Al Savvaris,et al.  A Novel Actuation Concept for a Multi Rotor UAV , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[143]  Farid Kendoul,et al.  Dependable Low‐altitude Obstacle Avoidance for Robotic Helicopters Operating in Rural Areas , 2013, J. Field Robotics.

[144]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[145]  Saurabh Sinha,et al.  Expanding wireless bandwidth in a power-efficient way: developing a viable mm-wave radio technology , 2013, East-West Design & Test Symposium (EWDTS 2013).

[146]  Christian Wietfeld,et al.  Role-Based Connectivity Management with Realistic Air-to-Ground Channels for Cooperative UAVs , 2012, IEEE Journal on Selected Areas in Communications.

[147]  Suman Chakravorty,et al.  Generalized Sampling-Based Motion Planners , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[148]  Robin R. Murphy,et al.  Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma , 2008 .

[149]  Robert J. Kerczewski,et al.  Parameter impact on sharing studies between UAS CNPC satellite transmitters and terrestrial systems , 2015, 2015 Integrated Communication, Navigation and Surveillance Conference (ICNS).

[150]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[151]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[152]  M. Armand,et al.  Building better batteries , 2008, Nature.

[153]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[154]  Claire J. Tomlin,et al.  Quadrotor Helicopter Trajectory Tracking Control , 2008 .

[155]  Martial Hebert,et al.  Learning monocular reactive UAV control in cluttered natural environments , 2012, 2013 IEEE International Conference on Robotics and Automation.

[156]  Reece A. Clothier,et al.  Towards Autonomous MAV Soaring in Cities: CFD Simulation, EFD Measurement and Flight Trials , 2015 .

[157]  Maxim Likhachev,et al.  Path planning for non-circular micro aerial vehicles in constrained environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[158]  Jon A. Peterka,et al.  Wind flow patterns about buildings , 1985 .

[159]  Jean-Marc Moschetta,et al.  Towards a Long Endurance MAV , 2009 .

[160]  Pratap Tokekar,et al.  Energy-optimal trajectory planning for car-like robots , 2014, Auton. Robots.

[161]  Michael Achtelik,et al.  Design of a flexible high performance quadcopter platform breaking the MAV endurance record with laser power beaming , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[162]  Edoardo Charbon,et al.  A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter , 2011, 2011 IEEE International Solid-State Circuits Conference.

[163]  Bruce T Clough,et al.  Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway , 2002 .

[164]  Javaan Chahl,et al.  Bioinspired optical sensors for unmanned aerial systems , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[165]  Paolo Monti,et al.  Particle trajectory simulation of dispersion around a building , 1998 .

[166]  P.-A. Besse,et al.  Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes , 2005, IEEE Journal of Solid-State Circuits.

[167]  O. del Río Herrero,et al.  A mobile ad-hoc satellite and wireless Mesh networking approach for Public Safety communications , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[168]  Carlos C. Insaurralde,et al.  Autonomy-assessment criteria for underwater vehicles , 2012, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV).

[169]  Marc Pollefeys,et al.  Autonomous Visual Mapping and Exploration With a Micro Aerial Vehicle , 2014, J. Field Robotics.

[170]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[171]  Anjan Chakrabarty,et al.  Energy Maps for Long-Range Path Planning for Small- and Micro - UAVs , 2009 .

[172]  Giorgio Guglieri,et al.  Path Planning Strategies for UAVS in 3D Environments , 2011, Journal of Intelligent & Robotic Systems.

[173]  Simon Watkins,et al.  A feasibility study of micro air vehicles soaring tall buildings , 2012 .

[174]  Luca Petricca,et al.  Micro- and Nano-Air Vehicles: State of the Art , 2011 .

[175]  Larry A. Young,et al.  System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft , 2005 .

[176]  Butrus T. Khuri-Yakub,et al.  Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers , 1999 .

[177]  V. Lumelsky,et al.  Dynamic path planning for a mobile automaton with limited information on the environment , 1986 .

[178]  V. Sarihan,et al.  Designing small footprint, low-cost, high-reliability packages for performance sensitive MEMS sensors , 2008, 2008 58th Electronic Components and Technology Conference.

[179]  Reece A. Clothier,et al.  Fixed-wing MAV attitude stability in atmospheric turbulence, part 1: Suitability of conventional sensors , 2014 .

[180]  Claude Sammut,et al.  GPU accelerated graph SLAM and occupancy voxel based ICP for encoder-free mobile robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[181]  Christopher D. Wickens,et al.  A model for types and levels of human interaction with automation , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[182]  John F. Canny,et al.  A Voronoi method for the piano-movers problem , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[183]  Salah Sukkarieh,et al.  A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV , 2013, Adv. Robotics.

[184]  Kimon P. Valavanis,et al.  Evolutionary algorithm based offline/online path planner for UAV navigation , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[185]  Kevin D. Jones,et al.  Vision-based tracking and motion estimation for moving targets using small UAVs , 2006, 2006 American Control Conference.

[186]  Ruud Vullers,et al.  A review of the present situation and future developments of micro‐batteries for wireless autonomous sensor systems , 2012 .

[187]  J. D. Holmes,et al.  Wind Loading of Structures , 2001 .

[188]  Dries Verstraete,et al.  On the energy efficiency of hydrogen-fuelled transport aircraft , 2015 .

[189]  Milan Simic,et al.  Receding horizon lateral vehicle control for pure pursuit path tracking , 2018 .

[190]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[191]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[192]  Roland Siegwart,et al.  Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments , 2014, IEEE Robotics & Automation Magazine.

[193]  Anjan Chakrabarty,et al.  UAV flight path planning in time varying complex wind-fields , 2013, 2013 American Control Conference.

[194]  Alonzo Kelly,et al.  Rough Terrain Autonomous Mobility—Part 1: A Theoretical Analysis of Requirements , 1998, Auton. Robots.

[195]  Sebastian Scherer,et al.  Flying Fast and Low Among Obstacles: Methodology and Experiments , 2008, Int. J. Robotics Res..

[196]  Cristina Elizetxea,et al.  Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences , 2014 .

[197]  Simon Watkins,et al.  The Soaring Potential of a Micro Air Vehicle in an Urban Environment , 2012 .

[198]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[199]  Salah Sukkarieh,et al.  Experimental validation of a drogue estimation algorithm for autonomous aerial refueling , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[200]  Roland Siegwart,et al.  Path planning for motion dependent state estimation on micro aerial vehicles , 2013, 2013 IEEE International Conference on Robotics and Automation.

[201]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[202]  Robin J. Evans,et al.  Radar-on-a-chip (ROACH) , 2010, 2010 IEEE Radar Conference.

[203]  Roland Siegwart,et al.  Monocular Vision for Long‐term Micro Aerial Vehicle State Estimation: A Compendium , 2013, J. Field Robotics.

[204]  Vijay Kumar,et al.  Stochastic differential equation-based exploration algorithm for autonomous indoor 3D exploration with a micro-aerial vehicle , 2012, Int. J. Robotics Res..

[205]  J.W. Langelaan Tree-based trajectory planning to exploit atmospheric energy , 2008, 2008 American Control Conference.

[206]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[207]  Milan N. Simic,et al.  Vehicular Ad Hoc Networks , 2013, 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS).

[208]  Peter I. Corke,et al.  Robotics, Vision and Control - Fundamental Algorithms in MATLAB® , 2011, Springer Tracts in Advanced Robotics.

[209]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[210]  Jong‐Jin Baik,et al.  A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model , 2004 .

[211]  Dario Floreano,et al.  Miniature curved artificial compound eyes , 2013, Proceedings of the National Academy of Sciences.

[212]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[213]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[214]  Robert J. Kerczewski,et al.  Assessing spectrum compatibility for beyond-line-of-sight UAS control and non-payload communications , 2014, 2014 Integrated Communications, Navigation and Surveillance Conference (ICNS) Conference Proceedings.

[215]  Kris K. Hauser,et al.  An empirical study of optimal motion planning , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[216]  Dries Verstraete,et al.  Hardware-In-The-Loop Simulation of Fuel-Cell-Based Hybrid-Electrical UAV Propulsion , 2012 .

[217]  Keith Share,et al.  Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. , 2014, Nanoscale.