Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties

A set of cooperative and noncooperative collision avoidance strategies for a pair of interacting agents with acceleration constraints, bounded sensing uncertainties, and limited sensing ranges is presented. We explicitly consider the case in which position information from the other agent is unreliable, and develop bounded control inputs using Lyapunov-based analysis, that guarantee collision-free trajectories for both agents. The proposed avoidance control strategies can be appended to any other stable control law (i.e., main control objective) and are active only when the agents are close to each other. As an application, we study in detail the synthesis of the avoidance strategies with a set-point stabilization control law and prove that the agents converge to the desired configurations while avoiding collisions and deadlocks (i.e., unwanted local minima). Simulation results are presented to validate the proposed control formulation.

[1]  Helmut Maurer,et al.  Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds , 2012, J. Optim. Theory Appl..

[2]  Erick J. Rodríguez-Seda Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed , 2014, 2014 American Control Conference.

[3]  P. Olver Nonlinear Systems , 2013 .

[4]  Rachael A. Bis,et al.  Velocity Occupancy Space: Robot Navigation and Moving Obstacle Avoidance With Sensor Uncertainty , 2009 .

[5]  Mark W. Spong,et al.  Cooperative Avoidance Control for Multiagent Systems , 2007 .

[6]  George Leitmann,et al.  A note on avoidance control , 1981 .

[7]  Inseok Hwang,et al.  Applications of polytopic approximations of reachable sets to linear dynamic games and a class of nonlinear systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[8]  Inseok Hwang,et al.  Computation of an over-approximation of the backward reachable set using subsystem level set functions , 2003, 2003 European Control Conference (ECC).

[9]  Dimos V. Dimarogonas,et al.  A feedback stabilization and collision avoidance scheme for multiple independent non-point agents, , 2006, Autom..

[10]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[11]  Dinesh Manocha,et al.  Reciprocal collision avoidance with acceleration-velocity obstacles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Mark W. Spong,et al.  Collision avoidance control with sensing uncertainties , 2011, Proceedings of the 2011 American Control Conference.

[13]  Khac Duc Do,et al.  Formation control of multiple elliptic agents with limited sensing ranges , 2012 .

[14]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[15]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[16]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[17]  Dusan M. Stipanovic,et al.  Lyapunov-based cooperative avoidance control for multiple Lagrangian systems with bounded sensing uncertainties , 2011, IEEE Conference on Decision and Control and European Control Conference.

[18]  Martin Buss,et al.  Safety assessment of robot trajectories for navigation in uncertain and dynamic environments , 2011, Autonomous Robots.

[19]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  G. Leitmann,et al.  Avoidance control , 1977 .

[21]  Kristi A. Morgansen,et al.  Distributed reactive collision avoidance , 2012, Autonomous Robots.

[22]  Christian Laugier,et al.  Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[23]  Dusan M. Stipanovic,et al.  Coordination and collision avoidance for Lagrangian systems with disturbances , 2010, Appl. Math. Comput..

[24]  Delfim F. M. Torres,et al.  Avoidance Control on Time Scales , 2009, 0910.3308.

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[26]  K. D. Do,et al.  Formation Tracking Control of Unicycle-Type Mobile Robots With Limited Sensing Ranges , 2008, IEEE Transactions on Control Systems Technology.

[27]  George Leitmann,et al.  Guaranteed avoidance feedback control , 1980 .

[28]  Dusan M. Stipanovic,et al.  Bilateral Teleoperation of Multiple Mobile Agents: Coordinated Motion and Collision Avoidance , 2010, IEEE Transactions on Control Systems Technology.

[29]  E. Polak,et al.  On the Perpetual Collision-Free RHC of Fleets of Vehicles , 2010 .

[30]  Angelo Miele,et al.  Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance , 2006 .

[31]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[32]  P Panyakeow,et al.  Decentralized deconfliction algorithms for unicycle UAVs , 2010, Proceedings of the 2010 American Control Conference.

[33]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[34]  Nejat Olgac,et al.  Control of antagonistic swarm dynamics via Lyapunov's method , 2012 .

[35]  D. Yoerger,et al.  Combined Doppler/LBL Based Navigation of Underwater Vehicles , 1999 .

[36]  Dusan M. Stipanovic,et al.  Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing , 2014, Int. J. Robotics Res..

[37]  R. Sengupta,et al.  Obstacle avoidance with sensor uncertainty for small unmanned aircraft , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[38]  George Leitmann,et al.  Guaranteed avoidance strategies , 1980 .

[39]  Hajime Asama,et al.  Inevitable collision states. A step towards safer robots? , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  Dusan M. Stipanovic,et al.  Polytopic Approximations of Reachable Sets Applied to Linear Dynamic Games and a Class of Nonlinear Systems , 2005 .

[41]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[42]  George Leitmann,et al.  A note on avoidance control , 1983 .

[43]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Tanya Tarnopolskaya,et al.  Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities , 2010 .

[45]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[46]  Carlos Silvestre,et al.  Coordinated Path-Following in the Presence of Communication Losses and Time Delays , 2009, SIAM J. Control. Optim..

[47]  Mark W. Spong,et al.  Guaranteed Safe Motion of Multiple Lagrangian Systems with Limited Actuation , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[48]  Dusan M. Stipanovic,et al.  Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments , 2008, Int. J. Robotics Res..

[49]  Martin Corless,et al.  ADAPTIVE CONTROL FOR AVOIDANCE OR EVASION IN AN UNCERTAIN ENVIRONMENT , 1987 .