Real-time optimization-based planning in dynamic environments using GPUs

We present a novel algorithm to compute collision-free trajectories in dynamic environments. Our approach is general and does not require a priori knowledge about the obstacles or their motion. We use a replanning framework that interleaves optimization-based planning with execution. Furthermore, we describe a parallel formulation that exploits a high number of cores on commodity graphics processors (GPUs) to compute a high-quality path in a given time interval. We derive bounds on how parallelization can improve the responsiveness of the planner and the quality of the trajectory.

[1]  Frank Chongwoo Park,et al.  Newton-type algorithms for dynamics-based robot movement optimization , 2005, IEEE Transactions on Robotics.

[2]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[3]  Nancy M. Amato,et al.  Probabilistic roadmap methods are embarrassingly parallel , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Maxim Likhachev,et al.  SIPP: Safe interval path planning for dynamic environments , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[6]  Mark H. Overmars,et al.  Roadmap-based motion planning in dynamic environments , 2005, IEEE Trans. Robotics.

[7]  Siddhartha S. Srinivasa,et al.  Manipulation planning with goal sets using constrained trajectory optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Eiichi Yoshida,et al.  Generation of dynamic motions under continuous constraints: Efficient computation using B-Splines and Taylor polynomials , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Tomás Lozano-Pérez,et al.  Parallel robot motion planning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[10]  M. Levas OBBTree : A Hierarchical Structure for Rapid Interference Detection , .

[11]  Dinesh Manocha,et al.  Hierarchical Optimization-based Planning for High-DOF Robots , 2013 .

[12]  Maxim Likhachev,et al.  High-dimensional planning on the GPU , 2010, 2010 IEEE International Conference on Robotics and Automation.

[13]  Dinesh Manocha,et al.  Generalized velocity obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[15]  Dinesh Manocha,et al.  g-Planner: Real-time Motion Planning and Global Navigation using GPUs , 2010, AAAI.

[16]  Dinesh Manocha,et al.  Randomized Path Planning for a Rigid Body Based on Hardware Accelerated Voronoi Sampling , 1999 .

[17]  LikhachevMaxim,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2009 .

[18]  Emilio Frazzoli,et al.  Massively parallelizing the RRT and the RRT , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Sven Koenig,et al.  Performance bounds for planning in unknown terrain , 2003, Artif. Intell..

[20]  F. David,et al.  Statistical Estimates and Transformed Beta-Variables. , 1960 .

[21]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[22]  Kris K. Hauser On responsiveness, safety, and completeness in real-time motion planning , 2012, Auton. Robots.

[23]  Lydia E. Kavraki,et al.  Distributed Sampling-Based Roadmap of Trees for Large-Scale Motion Planning , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Chonhyon Park,et al.  ITOMP: Incremental Trajectory Optimization for Real-Time Replanning in Dynamic Environments , 2012, ICAPS.

[25]  Didier Devaurs,et al.  Parallelizing RRT on distributed-memory architectures , 2011, 2011 IEEE International Conference on Robotics and Automation.

[26]  Alexander Verl,et al.  Real-time path planning for a robot arm in changing environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[28]  Fethi Belkhouche,et al.  Reactive Path Planning in a Dynamic Environment , 2009, IEEE Transactions on Robotics.

[29]  Dinesh Manocha,et al.  Interactive motion planning using hardware-accelerated computation of generalized Voronoi diagrams , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Oliver Brock,et al.  Planning Long Dynamically-Feasible Maneuvers for Autonomous Vehicles , 2009 .

[31]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[32]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[33]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Maxim Likhachev,et al.  Planning in Domains with Cost Function Dependent Actions , 2011, SOCS.

[35]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[36]  Yong K. Hwang,et al.  SANDROS: a dynamic graph search algorithm for motion planning , 1998, IEEE Trans. Robotics Autom..