Architecture of spatial circuits in the hippocampal region

The hippocampal region contains several principal neuron types, some of which show distinct spatial firing patterns. The region is also known for its diversity in neural circuits and many have attempted to causally relate network architecture within and between these unique circuits to functional outcome. Still, much is unknown about the mechanisms or network properties by which the functionally specific spatial firing profiles of neurons are generated, let alone how they are integrated into a coherently functioning meta-network. In this review, we explore the architecture of local networks and address how they may interact within the context of an overarching space circuit, aiming to provide directions for future successful explorations.

[1]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[2]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[3]  Matthew W Self,et al.  Different glutamate receptors convey feedforward and recurrent processing in macaque V1 , 2012, Proceedings of the National Academy of Sciences.

[4]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[5]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[6]  M. Witter,et al.  Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat , 1993, The Journal of comparative neurology.

[7]  Thomas Klausberger,et al.  Hippocampus: Intrinsic Organization , 2010 .

[8]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[9]  N. Dubin Mathematical Model , 2022 .

[10]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain: III. The lateral entorhinal area , 1988, The Journal of comparative neurology.

[11]  Simon M Stringer,et al.  Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning , 2006, Network.

[12]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[13]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[14]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[15]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  R. S. Jones,et al.  Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation , 1993, Neuroscience Letters.

[17]  Lisa M. Giocomo,et al.  Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons , 2007, Hippocampus.

[18]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[19]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[20]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[21]  M. V. Rossum,et al.  Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields , 2013, Neuron.

[22]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[23]  F. D. Silva,et al.  Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy , 2007, Neurobiology of Disease.

[24]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[25]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[26]  Roland S. G. Jones,et al.  Synaptic and intrinsic properties of neurons of origin of the perforant path in layer II of the rat entorhinal cortex in vitro , 1994, Hippocampus.

[27]  Floris G Wouterlood,et al.  Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat , 2004, Brain Research.

[28]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[29]  T. van Groen,et al.  Projections from the anterodorsal and anteroveniral nucleus of the thalamus to the limbic cortex in the rat , 1995, The Journal of comparative neurology.

[30]  E. Moser,et al.  All Layers of Medial Entorhinal Cortex Receive Presubicular and Parasubicular Inputs , 2012, The Journal of Neuroscience.

[31]  J. Lisman,et al.  The Input–Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields , 2009, The Journal of Neuroscience.

[32]  H. T. Blair,et al.  Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference , 2011, The Journal of Neuroscience.

[33]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[34]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[35]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[36]  Yoram Burak,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2008, PLoS Comput. Biol..

[37]  C. Leibold,et al.  Analysis of Excitatory Microcircuitry in the Medial Entorhinal Cortex Reveals Cell-Type-Specific Differences , 2010, Neuron.

[38]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[39]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[40]  Thomas J. McHugh,et al.  Updating hippocampal representations: CA2 joins the circuit , 2011, Trends in Neurosciences.

[41]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[42]  Colin Molter,et al.  Entorhinal theta phase precession sculpts dentate gyrus place fields , 2008, Hippocampus.

[43]  N. Spruston,et al.  Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors , 2012, Neuron.

[44]  Natalie L. M. Cappaert,et al.  Spatiotemporal analyses of interactions between entorhinal and CA1 projections to the subiculum in rat brain slices , 2007, Hippocampus.

[45]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[46]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[47]  Benjamin A. Dunn,et al.  Grid cells require excitatory drive from the hippocampus , 2013, Nature Neuroscience.

[48]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  F. H. Lopes da Silva,et al.  Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum , 2001, Hippocampus.

[50]  T. Bliss,et al.  Unit analysis of hippocampal population spikes , 2004, Experimental Brain Research.

[51]  Francesco Savelli,et al.  Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. , 2010, Journal of neurophysiology.

[52]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area , 1986, The Journal of comparative neurology.

[53]  Surya Ganguli,et al.  Behavioral/systems/cognitive Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum , 2022 .

[54]  C. Gerfen,et al.  Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus , 2013, The Journal of comparative neurology.

[55]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[56]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[57]  M. Hasselmo,et al.  Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing , 2010, The Journal of Neuroscience.

[58]  C. Köhler Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex , 1985, The Journal of comparative neurology.

[59]  J. Taube,et al.  Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity , 1998, The Journal of Neuroscience.

[60]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[61]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[62]  Menno P. Witter,et al.  Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons , 2013, The Journal of Neuroscience.

[63]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[64]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[65]  Menno P. Witter,et al.  Connectivity of the Hippocampus , 2010 .

[66]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[67]  G. Buzsáki,et al.  Intrinsic Circuit Organization and Theta–Gamma Oscillation Dynamics in the Entorhinal Cortex of the Rat , 2010, The Journal of Neuroscience.

[68]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[69]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[70]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[71]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[72]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[73]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[74]  P. E. Sharp,et al.  Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  Ivan Soltesz,et al.  Modeling the dentate gyrus. , 2007, Progress in brain research.

[76]  J. Taube Place cells recorded in the parasubiculum of freely moving rats , 1995, Hippocampus.

[77]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[78]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[79]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[80]  S. Siegelbaum,et al.  Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop , 2010, Neuron.

[81]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[83]  H. Shibata Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat , 1993, The Journal of comparative neurology.

[84]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[85]  M. Witter,et al.  Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex , 2012, Hippocampus.

[86]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[87]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[88]  Seralynne D. Vann,et al.  Re-evaluating the role of the mammillary bodies in memory , 2010, Neuropsychologia.

[89]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[90]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[91]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[92]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.