Neural Mechanisms of Self-Location

[1]  C. Darwin Origin of Certain Instincts , 1873, Nature.

[2]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[4]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[5]  A. Black,et al.  Stimulus control of spatial behavior on the eight-arm maze in rats ☆ ☆☆ , 1980 .

[6]  D. Zipser A computational model of hippocampal place fields. , 1985, Behavioral neuroscience.

[7]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Lucien T. Thompson,et al.  Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats , 1990, Brain Research.

[10]  R. Muller,et al.  The firing of hippocampal place cells in the dark depends on the rat's recent experience , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  E. Bostock,et al.  Experience‐dependent modifications of hippocampal place cell firing , 1991, Hippocampus.

[13]  Patricia E. Sharp,et al.  Computer simulation of hippocampal place cells , 1991, Psychobiology.

[14]  A. Etienne Navigation of a Small Mammal by Dead Reckoning and Local Cues , 1992 .

[15]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[16]  S. Mizumori,et al.  Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[18]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[19]  Bruce L. McNaughton,et al.  A Model of the Neural Basis of the Rat's Sense of Direction , 1994, NIPS.

[20]  B. McNaughton,et al.  Place cells, head direction cells, and the learning of landmark stability , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  H. T. Blair,et al.  Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Hugh T. Blair,et al.  Simualtion of a Thalamocortical Circuit for Computing Directional Heading in the Rat , 1995, NIPS.

[23]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[25]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[26]  A David Redishyx,et al.  A coupled attractor model of the rodent head direction system , 1996 .

[27]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[29]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[30]  K. Jeffery,et al.  Directional control of hippocampal place fields , 1997, Experimental Brain Research.

[31]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[32]  J O'Keefe,et al.  Robotic and neuronal simulation of the hippocampus and rat navigation. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  J. Taube,et al.  Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity , 1998, The Journal of Neuroscience.

[34]  S. Kasicki,et al.  The frequency of rat's hippocampal theta rhythm is related to the speed of locomotion , 1998, Brain Research.

[35]  E. Save,et al.  Spatial Firing of Hippocampal Place Cells in Blind Rats , 1998, The Journal of Neuroscience.

[36]  B. McNaughton,et al.  Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions , 1998, The Journal of Neuroscience.

[37]  Joseph R. Madsen,et al.  Human theta oscillations exhibit task dependence during virtual maze navigation , 1999, Nature.

[38]  I. Whishaw,et al.  Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation , 1999, Behavioural Brain Research.

[39]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[40]  Bruce L. McNaughton,et al.  Place cell firing shows an inertia-like process , 2000, Neurocomputing.

[41]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[42]  James J Knierim,et al.  Dynamic Interactions between Local Surface Cues, Distal Landmarks, and Intrinsic Circuitry in Hippocampal Place Cells , 2002, The Journal of Neuroscience.

[43]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[44]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[45]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[46]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[47]  A. Berthoz,et al.  Rapid Spatial Reorientation and Head Direction Cells , 2003, The Journal of Neuroscience.

[48]  Kathryn J Jeffery,et al.  Heterogeneous Modulation of Place Cell Firing by Changes in Context , 2003, The Journal of Neuroscience.

[49]  Carol A. Barnes,et al.  Head-direction cells in the rat posterior cortex , 1994, Experimental Brain Research.

[50]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[51]  J. O’Keefe,et al.  Single unit activity in the rat hippocampus during a spatial memory task , 2004, Experimental Brain Research.

[52]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[53]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[54]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[55]  Chris Eliasmith,et al.  A Controlled Attractor Network Model of Path Integration in the Rat , 2005, Journal of Computational Neuroscience.

[56]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[57]  A Schnee,et al.  Rats are able to navigate in virtual environments , 2005, Journal of Experimental Biology.

[58]  T. S. Collett,et al.  Landmark learning and visuo-spatial memories in gerbils , 1986, Journal of Comparative Physiology A.

[59]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[60]  B Poucet,et al.  Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment , 2005, Hippocampus.

[61]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[62]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[63]  J. Knierim,et al.  Head Direction Cell Representations Maintain Internal Coherence during Conflicting Proximal and Distal Cue Rotations: Comparison with Hippocampal Place Cells , 2006, The Journal of Neuroscience.

[64]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[65]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[66]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[67]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[68]  C. Barry,et al.  Learning in a geometric model of place cell firing , 2007, Hippocampus.

[69]  N. Ulanovsky,et al.  Hippocampal cellular and network activity in freely moving echolocating bats , 2007, Nature Neuroscience.

[70]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[71]  Pete R. Jones,et al.  Development of Cue Integration in Human Navigation , 2008, Current Biology.

[72]  H. T. Blair,et al.  Conversion of a phase‐ to a rate‐coded position signal by a three‐stage model of theta cells, grid cells, and place cells , 2008, Hippocampus.

[73]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[74]  T. Hafting,et al.  Grid cells in mice , 2008, Hippocampus.

[75]  J. O’Keefe,et al.  Grid cells and theta as oscillatory interference: Electrophysiological data from freely moving rats , 2008, Hippocampus.

[76]  Ila R Fiete,et al.  What Grid Cells Convey about Rat Location , 2008, The Journal of Neuroscience.

[77]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[78]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[79]  Michael E Hasselmo,et al.  Knock-Out of HCN1 Subunit Flattens Dorsal–Ventral Frequency Gradient of Medial Entorhinal Neurons in Adult Mice , 2009, The Journal of Neuroscience.

[80]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[81]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[82]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[83]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[84]  N. Burgess,et al.  Brain oscillations and memory , 2010, Current Opinion in Neurobiology.

[85]  Janet Wiles,et al.  Calibration of the head direction network: a role for symmetric angular head velocity cells , 2010, Journal of Computational Neuroscience.

[86]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[87]  A. Cheung,et al.  Which coordinate system for modelling path integration? , 2010, Journal of theoretical biology.

[88]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[89]  James J Knierim,et al.  Lateral entorhinal neurons are not spatially selective in cue‐rich environments , 2011, Hippocampus.

[90]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[91]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[92]  Neil Burgess,et al.  Models of place and grid cell firing and theta rhythmicity , 2011, Current Opinion in Neurobiology.

[93]  H. T. Blair,et al.  Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference , 2011, The Journal of Neuroscience.

[94]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[95]  James G. Heys,et al.  Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells , 2012, Front. Neural Circuits.

[96]  Michael E. Hasselmo,et al.  Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue , 2012, PLoS Comput. Biol..

[97]  Fraser T. Sparks,et al.  Neuronal code for extended time in the hippocampus , 2012, Proceedings of the National Academy of Sciences.

[98]  Stephen Grossberg,et al.  Grid cell hexagonal patterns formed by fast self‐organized learning within entorhinal cortex , 2012, Hippocampus.

[99]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[100]  Jeffrey S. Taube,et al.  Path integration: how the head direction signal maintains and corrects spatial orientation , 2012, Nature Neuroscience.

[101]  John A. King,et al.  How vision and movement combine in the hippocampal place code , 2012, Proceedings of the National Academy of Sciences.

[102]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[103]  Lisa M. Giocomo,et al.  Neural Circuits Original Research Article a Model Combining Oscillations and Attractor Dynamics for Generation of Grid Cell Firing , 2012 .

[104]  J. O’Keefe,et al.  Models of grid cells and theta oscillations , 2012, Nature.

[105]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[106]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[107]  M. Moser,et al.  Optogenetic Dissection of Entorhinal-Hippocampal Functional Connectivity , 2013, Science.

[108]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[109]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[110]  C. Barry,et al.  Specific evidence of low-dimensional continuous attractor dynamics in grid cells , 2013, Nature Neuroscience.

[111]  N. Burgess,et al.  A Hybrid Oscillatory Interference/Continuous Attractor Network Model of Grid Cell Firing , 2014, The Journal of Neuroscience.

[112]  Neil Burgess,et al.  Optimal configurations of spatial scale for grid cell firing under noise and uncertainty , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.