Towards the Next Generation of Retinal Neuroprosthesis: Visual Computation with Spikes.

Neuroprosthesis, as one type of precision medicine device, is aiming for manipulating neuronal signals of the brain in a closed-loop fashion, together with receiving stimulus from the environment and controlling some part of our brain/body. In terms of vision, incoming information can be processed by the brain in millisecond interval. The retina computes visual scenes and then sends its output as neuronal spikes to the cortex for further computation. Therefore, the neuronal signal of interest for retinal neuroprosthesis is spike. Closed-loop computation in neuroprosthesis includes two stages: encoding stimulus to neuronal signal, and decoding it into stimulus. Here we review some of the recent progress about visual computation models that use spikes for analyzing natural scenes, including static images and dynamic movies. We hypothesize that for a better understanding of computational principles in the retina, one needs a hypercircuit view of the retina, in which different functional network motifs revealed in the cortex neuronal network should be taken into consideration for the retina. Different building blocks of the retina, including a diversity of cell types and synaptic connections, either chemical synapses or electrical synapses (gap junctions), make the retina an ideal neuronal network to adapt the computational techniques developed in artificial intelligence for modeling of encoding/decoding visual scenes. Altogether, one needs a systems approach of visual computation with spikes to advance the next generation of retinal neuroprosthesis as an artificial visual system.

[1]  Alex L Kolodkin,et al.  Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. , 2017, Annual review of neuroscience.

[2]  A. Schwartz,et al.  High-performance neuroprosthetic control by an individual with tetraplegia , 2013, The Lancet.

[3]  Nikolaus Kriegeskorte,et al.  Deep neural networks: a new framework for modelling biological vision and brain information processing , 2015, bioRxiv.

[4]  Dario L Ringach,et al.  Spontaneous and driven cortical activity: implications for computation , 2009, Current Opinion in Neurobiology.

[5]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[6]  Hojjat Adeli,et al.  Spiking Neural Networks , 2009, Int. J. Neural Syst..

[7]  Oliver Braganza,et al.  The Circuit Motif as a Conceptual Tool for Multilevel Neuroscience , 2018, Trends in Neurosciences.

[8]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[9]  D. Fitzpatrick,et al.  Unequal representation of cardinal and oblique contours in ferret visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ruedi Stoop,et al.  The Neurodynamics of Belief Propagation on Binary Markov Random Fields , 2006, NIPS.

[11]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[12]  Stefano Panzeri,et al.  Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains , 2016, PLoS Comput. Biol..

[13]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[14]  Sheila Nirenberg,et al.  An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications , 2018, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[15]  Surya Ganguli,et al.  Inferring hidden structure in multilayered neural circuits , 2017, bioRxiv.

[16]  Haizhou Li,et al.  A Spiking Neural Network System for Robust Sequence Recognition , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[17]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[18]  Tiejun Huang,et al.  Winner-Take-All as Basic Probabilistic Inference Unit of Neuronal Circuits , 2018, ArXiv.

[19]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[20]  Yizhen Zhang,et al.  Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision , 2016, Cerebral cortex.

[21]  Zhaohui Wu,et al.  Jointly Learning Network Connections and Link Weights in Spiking Neural Networks , 2018, IJCAI.

[22]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[23]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[24]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[25]  Diego Ghezzi,et al.  Retinal prostheses: progress toward the next generation implants , 2015, Front. Neurosci..

[26]  Ha Hong,et al.  Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream , 2013, NIPS.

[27]  Rajesh P. N. Rao Bayesian Computation in Recurrent Neural Circuits , 2004, Neural Computation.

[28]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Jian K. Liu,et al.  Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit , 2016, eLife.

[30]  S. Denison,et al.  Probabilistic models, learning algorithms, and response variability: sampling in cognitive development , 2014, Trends in Cognitive Sciences.

[31]  Chethan Pandarinath,et al.  Retinal prosthetic strategy with the capacity to restore normal vision , 2012, Proceedings of the National Academy of Sciences.

[32]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[33]  Shimon Ullman,et al.  Cortical Circuitry Implementing Graphical Models , 2009, Neural Computation.

[34]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[35]  Alexandre Pouget,et al.  Exact Inferences in a Neural Implementation of a Hidden Markov Model , 2007, Neural Computation.

[36]  Wolfgang Maass,et al.  Noise as a Resource for Computation and Learning in Networks of Spiking Neurons , 2014, Proceedings of the IEEE.

[37]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[38]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[39]  Surya Ganguli,et al.  Deep learning models reveal internal structure and diverse computations in the retina under natural scenes , 2018, bioRxiv.

[40]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[41]  Stefan Habenschuss,et al.  Stochastic Computations in Cortical Microcircuit Models , 2013, PLoS Comput. Biol..

[42]  Karl J. Friston,et al.  Active Inference: A Process Theory , 2017, Neural Computation.

[43]  Tiejun Huang,et al.  Probabilistic Inference of Binary Markov Random Fields in Spiking Neural Networks through Mean-field Approximation , 2020, Neural Networks.

[44]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[45]  Michael J. Berry,et al.  High Accuracy Decoding of Dynamical Motion from a Large Retinal Population , 2014, PLoS Comput. Biol..

[46]  Dean V Buonomano,et al.  Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner , 2009, The Journal of Neuroscience.

[47]  Qionghai Dai,et al.  Sampling-based causal inference in cue combination and its neural implementation , 2016, Neurocomputing.

[48]  David Kappel,et al.  STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning , 2014, PLoS Comput. Biol..

[49]  Leon A. Gatys,et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images , 2019, PLoS Comput. Biol..

[50]  A. Pouget,et al.  Marginalization in Neural Circuits with Divisive Normalization , 2011, The Journal of Neuroscience.

[51]  Jeffrey L Goldberg,et al.  Retinal repair with induced pluripotent stem cells. , 2014, Translational research : the journal of laboratory and clinical medicine.

[52]  Pierre Kornprobst,et al.  Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina , 2017, Scientific reports.

[53]  Rong Xiao,et al.  Spike-based encoding and learning of spectrum features for robust sound recognition , 2018, Neurocomputing.

[54]  Ziv Bar-Joseph,et al.  Network Design and the Brain , 2018, Trends in Cognitive Sciences.

[55]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[56]  Nicolas Brunel,et al.  Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons , 2000, Journal of Physiology-Paris.

[57]  Luke A Johnson,et al.  Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (Callithrix jacchus) , 2017, The Journal of Neuroscience.

[58]  Stefano Panzeri,et al.  Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization , 2017, Nature Communications.

[59]  Gang Pan,et al.  Spiking Deep Residual Network , 2018, ArXiv.

[60]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[61]  Marla B. Feller,et al.  Organization and development of direction-selective circuits in the retina , 2011, Trends in Neurosciences.

[62]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[63]  Ian C Bruce,et al.  The history and future of neural modeling for cochlear implants , 2016, Network.

[64]  William F. Kindel,et al.  Using deep learning to reveal the neural code for images in primary visual cortex , 2017, ArXiv.

[65]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[66]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[67]  C. Furmanski,et al.  An oblique effect in human primary visual cortex , 2000, Nature Neuroscience.

[68]  Tiejun Huang,et al.  Neural System Identification With Spike-Triggered Non-Negative Matrix Factorization , 2018, IEEE Transactions on Cybernetics.

[69]  Zhaofei Yu,et al.  Neural network implementation of inference on binary Markov random fields with probability coding , 2017, Appl. Math. Comput..

[70]  Tiejun Huang,et al.  Revealing Fine Structures of the Retinal Receptive Field by Deep Learning Networks , 2020, IEEE transactions on cybernetics.

[71]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[72]  Subhrajit Roy,et al.  An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[73]  Rajesh P. N. Rao Hierarchical Bayesian Inference in Networks of Spiking Neurons , 2004, NIPS.

[74]  Liam Paninski,et al.  Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons , 2017, bioRxiv.

[75]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[76]  Gan He,et al.  A simple blind-denoising filter inspired by electrically coupled photoreceptors in the retina , 2018, ArXiv.

[77]  Fred Rieke,et al.  Cellular and Circuit Mechanisms Shaping the Perceptual Properties of the Primate Fovea , 2017, Cell.

[78]  David Kappel,et al.  CaMKII activation supports reward-based neural network optimization through Hamiltonian sampling , 2016 .

[79]  Tiejun Huang,et al.  Implementation of Bayesian Inference In Distributed Neural Networks , 2018, 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

[80]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[81]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[82]  William N. Grimes,et al.  Flexible Neural Hardware Supports Dynamic Computations in Retina , 2018, Trends in Neurosciences.

[83]  Yoram Singer,et al.  Learning a neural response metric for retinal prosthesis , 2017, bioRxiv.

[84]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[85]  Gustavo Deco,et al.  Stochastic dynamics as a principle of brain function , 2009, Progress in Neurobiology.

[86]  Pierre Kornprobst,et al.  Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings , 2016, eNeuro.

[87]  A. Gopnik,et al.  Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory. , 2012, Psychological bulletin.

[88]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[89]  Simon R. Schultz,et al.  Visual reconstruction from 2-photon calcium imaging suggests linear readout properties of neurons in mouse primary visual cortex , 2018, bioRxiv.

[90]  W. Ma,et al.  Towards a neural implementation of causal inference in cue combination. , 2013, Multisensory research.

[91]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[92]  William N Grimes,et al.  Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. , 2018, Annual review of vision science.

[93]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[94]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[95]  Jian K. Liu,et al.  Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina , 2015, PLoS Comput. Biol..

[96]  Luping Shi,et al.  CIFAR10-DVS: An Event-Stream Dataset for Object Classification , 2017, Front. Neurosci..

[97]  J. B. Demb,et al.  Functional Circuitry of the Retina. , 2015, Annual review of vision science.

[98]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[99]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[100]  Christian K. Machens,et al.  Linearity of Cortical Receptive Fields Measured with Natural Sounds , 2004, The Journal of Neuroscience.

[101]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[102]  Qi Yan,et al.  Emergent Inference of Hidden Markov Models in Spiking Neural Networks Through Winner-Take-All , 2020, IEEE Transactions on Cybernetics.

[103]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[104]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.

[105]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[106]  F. Esposti,et al.  Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision , 2011, Current Biology.

[107]  Sander M. Bohte,et al.  Computing with Spiking Neuron Networks , 2012, Handbook of Natural Computing.

[108]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[109]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[110]  Zhaofei Yu,et al.  Unification of MAP Estimation and Marginal Inference in Recurrent Neural Networks , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[111]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[112]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[114]  Sonya A. Coleman,et al.  Bioinspired Approach to Modeling Retinal Ganglion Cells Using System Identification Techniques , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[115]  Thomas L. Griffiths,et al.  Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling , 2009, NIPS.

[116]  Gengfeng Zheng,et al.  Nanowire arrays restore vision in blind mice , 2018, Nature Communications.

[117]  B. Völgyi,et al.  The diverse functional roles and regulation of neuronal gap junctions in the retina , 2009, Nature Reviews Neuroscience.

[118]  Adam N Sanborn,et al.  Exemplar models as a mechanism for performing Bayesian inference , 2010, Psychonomic bulletin & review.

[119]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[120]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[121]  S. Bloomfield,et al.  Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. , 2018, Annual review of vision science.

[122]  Wolfgang Maass,et al.  Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[123]  S. Baccus,et al.  Transformation of visual signals by inhibitory interneurons in retinal circuits. , 2013, Annual review of neuroscience.

[124]  Jose M. Carmena,et al.  Rapid control and feedback rates enhance neuroprosthetic control , 2017, Nature Communications.

[125]  Andrew S. Whitford,et al.  Cortical control of a prosthetic arm for self-feeding , 2008, Nature.

[126]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[127]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[128]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[129]  John P. Cunningham,et al.  A High-Performance Neural Prosthesis Enabled by Control Algorithm Design , 2012, Nature Neuroscience.

[130]  Tiejun Huang,et al.  Spike Coding for Dynamic Vision Sensors , 2018, 2018 Data Compression Conference.

[131]  Alexander S. Ecker,et al.  Neural system identification for large populations separating "what" and "where" , 2017, NIPS.

[132]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[133]  Chris E. Williams,et al.  Visual prostheses for the blind. , 2013, Trends in biotechnology.

[134]  Alexander Borst,et al.  Visual Circuits for Direction Selectivity. , 2017, Annual review of neuroscience.

[135]  I. Wilmut,et al.  Using human induced pluripotent stem cells to treat retinal disease , 2013, Progress in Retinal and Eye Research.

[136]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[137]  S. Denison,et al.  Rational variability in children’s causal inferences: The Sampling Hypothesis , 2013, Cognition.

[138]  Tiejun Huang,et al.  Reconstruction of Natural Visual Scenes from Neural Spikes with Deep Neural Networks , 2019, Neural Networks.

[139]  Michael N. Shadlen,et al.  Probabilistic reasoning by neurons , 2007, Nature.

[140]  Giovanni Staurenghi,et al.  Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. , 2017, The New England journal of medicine.

[141]  Maneesh Sahani,et al.  How Linear are Auditory Cortical Responses? , 2002, NIPS.

[142]  Gregory Cohen,et al.  Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades , 2015, Front. Neurosci..

[143]  M. Sigman,et al.  Confidence as Bayesian Probability: From Neural Origins to Behavior , 2015, Neuron.

[144]  D. Palanker,et al.  Electronic approaches to restoration of sight , 2016, Reports on progress in physics. Physical Society.

[145]  Aapo Hyvärinen,et al.  Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior , 2002, NIPS.

[146]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[147]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[148]  R. Andersen,et al.  Cognitive Control Signals for Neural Prosthetics , 2004, Science.

[149]  E. Fetz,et al.  Direct control of paralyzed muscles by cortical neurons , 2008, Nature.

[150]  Qi Yan,et al.  Revealing structure components of the retina by deep learning networks , 2017, ArXiv.

[151]  Liam Paninski,et al.  Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses , 2016, ICLR.

[152]  T. Nipkow,et al.  Probabilistic Models , 2004 .

[153]  Marian Stamp Dawkins,et al.  The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[154]  Timothée Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[155]  Alex M C Milton Review: The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function , 2011 .

[156]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[157]  Zheng Li,et al.  Decoding methods for neural prostheses: where have we reached? , 2014, Front. Syst. Neurosci..

[158]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[159]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[160]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[161]  L. Schulz,et al.  Children balance theories and evidence in exploration, explanation, and learning , 2012, Cognitive Psychology.

[162]  Wolfgang Maass,et al.  Searching for principles of brain computation , 2016, Current Opinion in Behavioral Sciences.

[163]  Jean-Jacques E. Slotine,et al.  Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks , 2018, Neural Computation.

[164]  James A. Bednar,et al.  Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes , 2016, PLoS Comput. Biol..

[165]  Jean-Baptiste Poline,et al.  Inverse retinotopy: Inferring the visual content of images from brain activation patterns , 2006, NeuroImage.

[166]  Georg Martius,et al.  Nonlinear decoding of a complex movie from the mammalian retina , 2016, PLoS Comput. Biol..

[167]  Gang Pan,et al.  CSNN: An Augmented Spiking based Framework with Perceptron-Inception , 2018, IJCAI.

[168]  Jonathan D Victor,et al.  Spike train metrics , 2005, Current Opinion in Neurobiology.

[169]  Thomas J. Anastasio,et al.  Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus , 2000, Neural Computation.

[170]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[171]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[172]  Mark C. W. van Rossum,et al.  A Novel Spike Distance , 2001, Neural Computation.

[173]  Nicholay Topin,et al.  Deep Convolutional Neural Network Design Patterns , 2016, ArXiv.

[174]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[175]  Luca Berdondini,et al.  Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse , 2013, The Journal of physiology.

[176]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[177]  Jian K. Liu,et al.  Learning Rule of Homeostatic Synaptic Scaling: Presynaptic Dependent or Not , 2011, Neural Computation.

[178]  Xiaolin Hu,et al.  Hierarchical Bayesian Inference and Learning in Spiking Neural Networks , 2019, IEEE Transactions on Cybernetics.

[179]  Wolfgang Maass,et al.  Belief Propagation in Networks of Spiking Neurons , 2009, Neural Computation.

[180]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[181]  Frank S Werblin,et al.  The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function , 2011, The Journal of physiology.

[182]  Timothy D. Hanks,et al.  Probabilistic Population Codes for Bayesian Decision Making , 2008, Neuron.

[183]  Wolfgang Maass,et al.  Lower Bounds for the Computational Power of Networks of Spiking Neurons , 1996, Neural Computation.

[184]  Tatyana O. Sharpee,et al.  Cross-orientation suppression in visual area V2 , 2017, Nature Communications.

[185]  James D. Weiland,et al.  Retinal stimulation strategies to restore vision: Fundamentals and systems , 2016, Progress in Retinal and Eye Research.

[186]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[187]  Stefan Habenschuss,et al.  Solving Constraint Satisfaction Problems with Networks of Spiking Neurons , 2016, Front. Neurosci..

[188]  Robert A. Legenstein,et al.  Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment , 2014, PLoS Comput. Biol..

[189]  Miguel A. L. Nicolelis,et al.  Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex , 1999, Nature Neuroscience.

[190]  Maneesh Sahani,et al.  Models of Neuronal Stimulus-Response Functions: Elaboration, Estimation, and Evaluation , 2017, Front. Syst. Neurosci..

[191]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[192]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[193]  Gert Cauwenberghs,et al.  Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry , 2016, Journal of neural engineering.

[194]  Tiejun Huang,et al.  Spike Camera and Its Coding Methods , 2017, 2017 Data Compression Conference (DCC).

[195]  Dileep George Belief Propagation and Wiring Length Optimization as Organizing Principles for Cortical Microcircuits , 2005 .

[196]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[197]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[198]  J. Gold,et al.  Banburismus and the Brain Decoding the Relationship between Sensory Stimuli, Decisions, and Reward , 2002, Neuron.