Simple and Efficient Algorithms for Computing Smooth, Collision-free Feedback Laws Over Given Cell Decompositions

This paper presents a novel approach to computing feedback laws in the presence of obstacles. Instead of computing a trajectory between a pair of initial and goal states, our algorithms compute a vector field over the entire state space; all trajectories obtained from following this vector field are guaranteed to asymptotically reach the goal state. As a result, the vector field globally solves the navigation problem and provides robustness to disturbances in sensing and control. The vector field's integral curves (system trajectories) are guaranteed to avoid obstacles and are C ∞ smooth. We construct a vector field with these properties by partitioning the space into simple cells, defining local vector fields for each cell, and smoothly interpolating between them to obtain a global vector field. We present an algorithm that computes these feedback controls for a kinematic point robot in an arbitrary dimensional space with piecewise linear boundary; the algorithm requires minimal preprocessing of the environment and is extremely fast during execution. For many practical applications in two-dimensional environments, full computation can be done in milliseconds. We also present an algorithm for computing feedback laws over cylindrical algebraic decompositions, thereby solving a smooth feedback version of the generalized piano movers' problem.

[1]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[2]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[3]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[4]  I.I. Hussein,et al.  Real Time Feedback Control for Nonholonomic Mobile Robots With Obstacles , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[5]  Lydia E. Kavraki,et al.  Fast Tree-Based Exploration of State Space for Robots with Dynamics , 2004, WAFR.

[6]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[7]  Masazumi Katayama,et al.  An extension of passive velocity field control to cooperative multiple manipulator systems , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[8]  J.H. van Schuppen,et al.  Control to facet problems for affine systems on simplices and polytopes – With applications to control of hybrid systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[10]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[11]  Perry Y. Li,et al.  Passive velocity field control (PVFC). Part I. Geometry and robustness , 2001, IEEE Trans. Autom. Control..

[12]  Mircea R. Stan,et al.  Analog VLSI for robot path planning , 1994, J. VLSI Signal Process..

[13]  Mireille E. Broucke,et al.  Necessary and Sufficient Conditions for Reachability on a Simplex , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[15]  Kimon P. Valavanis,et al.  Navigation of an autonomous vehicle using a combined electrostatic potential field/fuzzy inference approach , 1998 .

[16]  Iwan Ulrich,et al.  VFH/sup */: local obstacle avoidance with look-ahead verification , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Perry Y. Li,et al.  Passive velocity field control (PVFC). Part II. Application to contour following , 2001, IEEE Trans. Autom. Control..

[18]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[19]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[20]  Gregory S. Chirikjian,et al.  A new potential field method for robot path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Oliver Brock,et al.  Elastic Roadmaps: Globally Task-Consistent Motion for Autonomous Mobile Manipulation in Dynamic Environments , 2006, Robotics: Science and Systems.

[22]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[23]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[24]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[26]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[27]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[28]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[29]  Jan H. van Schuppen,et al.  A control problem for affine dynamical systems on a full-dimensional polytope , 2004, Autom..

[30]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[31]  Jan H. van Schuppen,et al.  Reachability and control synthesis for piecewise-affine hybrid systems on simplices , 2006, IEEE Transactions on Automatic Control.

[32]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[33]  Kevin M. Lynch,et al.  Trajectory Planning for Kinematically Controllable Underactuated Mechanical Systems , 2004, WAFR.

[34]  Jonathan P. How,et al.  Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming , 2002 .

[35]  Petter Ögren,et al.  A convergent dynamic window approach to obstacle avoidance , 2005, IEEE Transactions on Robotics.

[36]  Javier Moreno-Valenzuela,et al.  Hierarchical velocity field control for robot manipulators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[37]  Calin Belta,et al.  Discrete abstractions for robot motion planning and control in polygonal environments , 2005, IEEE Transactions on Robotics.

[38]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[39]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[40]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[41]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[42]  Masaki Yamakita,et al.  An application of passive velocity field control to cooperative multiple 3-wheeled mobile robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[43]  L.C.G.J.M. Habets,et al.  Control of multi-affine systems on rectangles with applications to hybrid biomolecular networks , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[44]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[45]  Wolfram Burgard,et al.  An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Математика Vector Field Histogram , 2010 .

[47]  Florent Lamiraux,et al.  Flatness and small-time controllability of multibody mobile robots: Application to motion planning , 1997, 1997 European Control Conference (ECC).

[48]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[49]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[50]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[51]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[52]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1998, IEEE Trans. Robotics Autom..

[53]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[54]  G. Swaminathan Robot Motion Planning , 2006 .

[55]  Jean-Paul Laumond,et al.  Flatness and small-time controllability of multibody mobile robots: Application to motion planning , 1997 .

[56]  Kurt Mehlhorn,et al.  Fast Triangulation of Simple Polygons , 1983, FCT.

[57]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[58]  J. How,et al.  Receding horizon path planning with implicit safety guarantees , 2004, Proceedings of the 2004 American Control Conference.

[59]  D. Manocha,et al.  Fast Polygon Triangulation Based on Seidel's Algorithm , 1995 .

[60]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[61]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[62]  Richard M. Murray,et al.  Vehicle motion planning using stream functions , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[63]  Ian M. Mitchell,et al.  Continuous path planning with multiple constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[64]  Steven M. LaValle,et al.  Smooth Feedback for Car-Like Vehicles in Polygonal Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[65]  S. LaValle,et al.  Smoothly Blending Vector Fields for Global Robot Navigation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[66]  Amit Kumar,et al.  Towards Decentralization of Multi-robot Navigation Functions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[67]  Alfred A. Rizzi Hybrid control as a method for robot motion programming , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[68]  Steven M. LaValle,et al.  The sampling-based neighborhood graph: an approach to computing and executing feedback motion strategies , 2004, IEEE Transactions on Robotics and Automation.

[69]  Jose M. Bañon Implementation and extension of the ladder algorithm , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[70]  Roderic A. Grupen,et al.  A Hamiltonian framework for kinodynamic planning and control , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[71]  Steven M. LaValle,et al.  Computing Smooth Feedback Plans Over Cylindrical Algebraic Decompositions , 2006, Robotics: Science and Systems.

[72]  Jan H. van Schuppen,et al.  Control of Piecewise-Linear Hybrid Systems on Simplices and Rectangles , 2001, HSCC.

[73]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[74]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[75]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[76]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[77]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Peter Forbes Rowat,et al.  Representing spatial experience and solving spatial problems in a simulated robot environment , 1979 .

[79]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[80]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[81]  Dimos V. Dimarogonas,et al.  Decentralized feedback stabilization of multiple nonholonomic agents , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[82]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[83]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[84]  Zdzislaw Bubnicki,et al.  Modern Control Theory , 2005 .

[85]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[86]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[87]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[88]  Pradeep K. Khosla,et al.  Manipulator control with superquadric artificial potential functions: theory and experiments , 1990, IEEE Trans. Syst. Man Cybern..

[89]  Javier Moreno-Valenzuela,et al.  A robust velocity field control , 2002, IEEE Trans. Control. Syst. Technol..

[90]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[91]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[92]  Micha Sharir,et al.  Retraction: A new approach to motion-planning , 1983, STOC.

[93]  Guoqiang Hu,et al.  Adaptive velocity field control of a wheeled mobile robot , 2005, Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05..

[94]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[95]  Steven M. LaValle,et al.  Algorithms for Computing Numerical Optimal Feedback Motion Strategies , 2001, Int. J. Robotics Res..

[96]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[97]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[98]  Kimon P. Valavanis,et al.  Mobile robot navigation in 2-D dynamic environments using an electrostatic potential field , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[99]  Perry Y. Li,et al.  Passive velocity field control of mechanical manipulators , 1995, IEEE Trans. Robotics Autom..

[100]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[101]  Steven M. LaValle,et al.  Multiresolution approach for motion planning under differential constraints , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[102]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[103]  Raimund Seidel Reprint of: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons , 2010, Comput. Geom..

[104]  Calin Belta,et al.  Reachability analysis of multi-affine systems , 2006, HSCC.

[105]  George J. Pappas,et al.  Hybrid Controllers for Path Planning: A Temporal Logic Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[106]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[107]  Kostas J. Kyriakopoulos,et al.  A feedback-based multiagent navigation framework , 2006, Int. J. Syst. Sci..

[108]  Harry Chia-Hung Hsu,et al.  Robot Path Planning , 2009, Wiley Encyclopedia of Computer Science and Engineering.

[109]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[110]  Ahmad A. Masoud,et al.  Constrained motion control using vector potential fields , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[111]  Bud Mishra,et al.  Computational Real Algebraic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[112]  Reid G. Simmons,et al.  The lane-curvature method for local obstacle avoidance , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[113]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[114]  R. Stengel,et al.  CONTROL systems. , 1952, Hospitals.

[115]  Kimon P. Valavanis,et al.  Sensor-based 2-D Potential Panel Method for Robot Motion Planning , 1996, Robotica.

[116]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[117]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[118]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[119]  Raimund Seidel,et al.  A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons , 1991, Comput. Geom..