Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision

While impressive progress has recently been made with autonomous vehicles, both indoors and on streets, autonomous localization and navigation in less constrained and more dynamic environments, such as outdoor pedestrian and bicycle-friendly sites, remains a challenging problem. We describe a new approach that utilizes several visual perception modules-place recognition, landmark recognition, and road lane detection-supplemented by proximity cues from a planar laser range finder for obstacle avoidance. At the core of our system is a new hybrid topological/grid-occupancy map that integrates the outputs from all perceptual modules, despite different latencies and time scales. Our approach allows for real-time performance through a combination of fast but shallow processing modules that update the map's state while slower but more discriminating modules are still computing. We validated our system using a ground vehicle that autonomously traversed three outdoor routes several times, each 400 m or longer, on a university campus. The routes featured different road types, environmental hazards, moving pedestrians, and service vehicles. In total, the robot logged over 10 km of successful recorded experiments, driving within a median of 1.37 m laterally of the center of the road, and localizing within 0.97 m median longitudinally of its true location along the route.

[1]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[2]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[3]  Laurent Itti,et al.  Biologically Inspired Mobile Robot Vision Localization , 2009, IEEE Transactions on Robotics.

[4]  David Furcy,et al.  Incremental Heuristic Search in Artificial Intelligence , 2004 .

[5]  Paul Newman,et al.  Navigating, Recognizing and Describing Urban Spaces With Vision and Lasers , 2009, Int. J. Robotics Res..

[6]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[7]  Gordon Wyeth,et al.  CAT-SLAM: probabilistic localisation and mapping using a continuous appearance-based trajectory , 2012, Int. J. Robotics Res..

[8]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[9]  Gérard G. Medioni,et al.  Robot vision for the visually impaired , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[10]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[11]  Christian Vollmer,et al.  Learning to navigate through crowded environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Gordon Wyeth,et al.  Mapping a Suburb With a Single Camera Using a Biologically Inspired SLAM System , 2008, IEEE Transactions on Robotics.

[13]  Martin Buss,et al.  The Autonomous City Explorer: Towards Semantic Navigation in Urban Environments , 2008 .

[14]  Wolfram Burgard,et al.  Improving robot navigation in structured outdoor environments by identifying vegetation from laser data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Andrea Cherubini,et al.  A new tentacles-based technique for avoiding obstacles during visual navigation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Achim J. Lilienthal,et al.  Incremental spectral clustering and seasons: Appearance-based localization in outdoor environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Minoru Asada,et al.  Motion Sketch: Acquisition of Visual Motion Guided Behaviors , 1995, IJCAI.

[18]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[19]  Yan Lu,et al.  Appearance contrast for fast, robust trail-following , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Giulio Sandini,et al.  Divergent stereo for robot navigation: learning from bees , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  G. Reina,et al.  Adaptive Kalman Filtering for GPS-based Mobile Robot Localization , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[23]  John R. Spletzer,et al.  To the Bookstore! Autonomous Wheelchair Navigation in an Urban Environment , 2012, FSR.

[24]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[25]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[26]  Peter Haywood King A Low Cost Localization Solution Using a Kalman Filter for Data Fusion , 2008 .

[27]  Hideki Hashimoto,et al.  Tsukuba Challenge 2009 - Towards Robots Working in the Real World: Records in 2009 - , 2011, J. Robotics Mechatronics.

[28]  Andreas Krause,et al.  Unfreezing the robot: Navigation in dense, interacting crowds , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Roland Siegwart,et al.  Curb detection for a pedestrian robot in urban environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[30]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[31]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[32]  N. Ouerhani,et al.  VISUAL ATTENTION-BASED ROBOT SELF-LOCALIZATION , 2005 .

[33]  Laurent Itti,et al.  Mobile robot monocular vision navigation based on road region and boundary estimation , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[35]  Philip Frederick,et al.  The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control , 2011, Electronic Imaging.

[36]  W. Sardha Wijesoma,et al.  Fast Vanishing-Point Detection in Unstructured Environments , 2012, IEEE Transactions on Image Processing.

[37]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[38]  Frank Dellaert,et al.  Online probabilistic topological mapping , 2011, Int. J. Robotics Res..

[39]  Nelson Alves,et al.  Swarm-based visual saliency for trail detection , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Sinisa Segvic,et al.  A mapping and localization framework for scalable appearance-based navigation , 2009, Comput. Vis. Image Underst..

[41]  David Furcy,et al.  Incremental Heuristic Search in AI , 2004, AI Mag..

[42]  Richard Szeliski,et al.  City-Scale Location Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[44]  Dacheng Tao,et al.  Biologically Inspired Feature Manifold for Scene Classification , 2010, IEEE Transactions on Image Processing.

[45]  Ashutosh Saxena,et al.  High speed obstacle avoidance using monocular vision and reinforcement learning , 2005, ICML.

[46]  Andreas Zell,et al.  A hybrid approach for vision-based outdoor robot localization using global and local image features , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[48]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[49]  Kurt Konolige,et al.  Navigation in hybrid metric-topological maps , 2011, 2011 IEEE International Conference on Robotics and Automation.

[50]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[51]  Tsai Hong Hong,et al.  Real-time Obstacle Avoidance Using Central Flow Divergence and Peripheral Flow | NIST , 1995 .

[52]  Gordon Wyeth,et al.  Persistent Navigation and Mapping using a Biologically Inspired SLAM System , 2010, Int. J. Robotics Res..

[53]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[54]  Paul F. M. J. Verschure,et al.  A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance , 2007, Int. J. Robotics Res..

[55]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[56]  Kostas Daniilidis,et al.  Monocular visual odometry in urban environments using an omnidirectional camera , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Dirk Haehnel,et al.  Junior: The Stanford entry in the Urban Challenge , 2008 .

[58]  Nuno Lau,et al.  Using a Depth Camera for Indoor Robot Localization and Navigation , 2011 .

[59]  Frank E. Schneider,et al.  Results of the European Land Robot Trial and Their Usability for Benchmarking Outdoor Robot Systems , 2011, TAROS.

[60]  Tom Drummond,et al.  Unified Loop Closing and Recovery for Real Time Monocular SLAM , 2008, BMVC.

[61]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[62]  Laurent Itti,et al.  Comparison of gist models in rapid scene categorization tasks , 2010 .

[63]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[64]  Martin Buss,et al.  The Autonomous City Explorer (ACE) project — mobile robot navigation in highly populated urban environments , 2009, 2009 IEEE International Conference on Robotics and Automation.

[65]  Paul Timothy Furgale,et al.  Visual teach and repeat for long‐range rover autonomy , 2010, J. Field Robotics.

[66]  Michel Dhome,et al.  Monocular Vision for Mobile Robot Localization and Autonomous Navigation , 2007, International Journal of Computer Vision.

[67]  Luc Van Gool,et al.  Pedestrian detection at 100 frames per second , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[69]  Gonzalo Ferrer,et al.  Autonomous navigation for mobile service robots in urban pedestrian environments , 2011, J. Field Robotics.

[70]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[71]  C. Koch,et al.  Models of bottom-up and top-down visual attention , 2000 .

[72]  Derek D. Lichti,et al.  Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning , 2010, Remote. Sens..

[73]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[74]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[75]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[76]  Laurent Itti,et al.  Storing and recalling information for vision localization , 2008, 2008 IEEE International Conference on Robotics and Automation.

[77]  Hongbin Zha,et al.  Coarse-to-fine vision-based localization by indexing scale-Invariant features , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[78]  Franz Kummert,et al.  Monocular road segmentation using slow feature analysis , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[79]  Laurent Itti,et al.  Mobile robot navigation system in outdoor pedestrian environment using vision-based road recognition , 2013, 2013 IEEE International Conference on Robotics and Automation.

[80]  Wei Zhang,et al.  Localization Based on Building Recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[81]  Laurent Itti,et al.  Beobot 2.0: Cluster architecture for mobile robotics , 2011, J. Field Robotics.

[82]  John K. Tsotsos,et al.  Histogram of Oriented Uniform Patterns for robust place recognition and categorization , 2012, Int. J. Robotics Res..

[83]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[84]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[85]  Barbara Caputo,et al.  Visual Servoing to Help Camera Operators Track Better , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[86]  Ana Cristina Murillo,et al.  SURF features for efficient robot localization with omnidirectional images , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[87]  Gaurav S. Sukhatme,et al.  Vision‐based navigation through urban canyons , 2009, J. Field Robotics.

[88]  Benjamin Kuipers,et al.  Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy , 2010, Int. J. Robotics Res..

[89]  Jean Ponce,et al.  General Road Detection From a Single Image , 2010, IEEE Transactions on Image Processing.

[90]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[91]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[92]  Laurent Itti,et al.  Mobile robot vision navigation & localization using Gist and Saliency , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[93]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Kurt Konolige,et al.  The Office Marathon: Robust navigation in an indoor office environment , 2010, 2010 IEEE International Conference on Robotics and Automation.

[95]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[96]  Laurent Itti,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Rapid Biologically-inspired Scene Classification Using Features Shared with Visual Attention , 2022 .

[97]  Barbara Caputo,et al.  Multi-modal Semantic Place Classification , 2010, Int. J. Robotics Res..

[98]  Steven M. LaValle,et al.  The sampling-based neighborhood graph: an approach to computing and executing feedback motion strategies , 2004, IEEE Transactions on Robotics and Automation.

[99]  Wolfram Burgard,et al.  OctoMap : A Probabilistic , Flexible , and Compact 3 D Map Representation for Robotic Systems , 2010 .

[100]  Zhichao Chen,et al.  Qualitative vision-based mobile robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[101]  Ondrej Miksik Rapid vanishing point estimation for general road detection , 2012, 2012 IEEE International Conference on Robotics and Automation.