Learning Manipulation States and Actions for Efficient Non-prehensile Rearrangement Planning

This paper addresses non-prehensile rearrangement planning problems where a robot is tasked to rearrange objects among obstacles on a planar surface. We present an efficient planning algorithm that ...

[1]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[2]  Mark H. Overmars,et al.  Path planning for pushing a disk using compliance , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Christopher G. Atkeson,et al.  A comparison of direct and model-based reinforcement learning , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  Ehud Rivlin,et al.  To push or not to push: on the rearrangement of movable objects by a mobile robot , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[6]  Kostas E. Bekris,et al.  Dealing with Difficult Instances of Object Rearrangement , 2015, Robotics: Science and Systems.

[7]  Guy Lever,et al.  Deterministic Policy Gradient Algorithms , 2014, ICML.

[8]  S. Srinivasa,et al.  Push-grasping with dexterous hands: Mechanics and a method , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Akansel Cosgun,et al.  Push planning for object placement on cluttered table surfaces , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Siddhartha S. Srinivasa,et al.  Nonprehensile whole arm rearrangement planning on physics manifolds , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[12]  Oussama Khatib,et al.  MOPL: A multi-modal path planner for generic manipulation tasks , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Pieter Abbeel,et al.  Physics-based trajectory optimization for grasping in cluttered environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Jun Ota,et al.  Rearrangement of multiple movable objects - integration of global and local planning methodology , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Kostas E. Bekris,et al.  Efficiently solving general rearrangement tasks: A fast extension primitive for an incremental sampling-based planner , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Rachid Alami,et al.  Two manipulation planning algorithms , 1995 .

[17]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[19]  Leslie Pack Kaelbling,et al.  FFRob: Leveraging symbolic planning for efficient task and motion planning , 2016, Int. J. Robotics Res..

[20]  Leslie Pack Kaelbling,et al.  A hierarchical approach to manipulation with diverse actions , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  Tamim Asfour,et al.  Manipulation Planning Among Movable Obstacles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[22]  Gordon T. Wilfong,et al.  Motion planning in the presence of movable obstacles , 1988, SCG '88.

[23]  Ehud Rivlin,et al.  Practical pushing planning for rearrangement tasks , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  Siddhartha S. Srinivasa,et al.  Convergent Planning , 2016, IEEE Robotics and Automation Letters.

[25]  James J. Kuffner,et al.  Navigation among movable obstacles: real-time reasoning in complex environments , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[26]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[27]  Yuval Tassa,et al.  MuJoCo: A physics engine for model-based control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Claudio Zito,et al.  Two-level RRT planning for robotic push manipulation , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Leslie Pack Kaelbling,et al.  Manipulation with Multiple Action Types , 2012, ISER.

[30]  Siddhartha S. Srinivasa,et al.  Kinodynamic randomized rearrangement planning via dynamic transitions between statically stable states , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[31]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[32]  Esra Erdem,et al.  Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Siddhartha S. Srinivasa,et al.  Rearrangement planning using object-centric and robot-centric action spaces , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Thierry Siméon,et al.  Manipulation Planning with Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[35]  Matthew T. Mason,et al.  Pushing revisited: Differential flatness, trajectory planning, and stabilization , 2019, Int. J. Robotics Res..

[36]  Mike Stilman,et al.  Combining motion planning and optimization for flexible robot manipulation , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[37]  Mark H. Overmars,et al.  An Effective Framework for Path Planning Amidst Movable Obstacles , 2006, WAFR.

[38]  Maya Cakmak,et al.  Making objects graspable in confined environments through push and pull manipulation with a tool , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Siddhartha S. Srinivasa,et al.  Unobservable Monte Carlo planning for nonprehensile rearrangement tasks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Kostas E. Bekris,et al.  Rearranging similar objects with a manipulator using pebble graphs , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[41]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[42]  Kris K. Hauser,et al.  The minimum constraint removal problem with three robotics applications , 2014, Int. J. Robotics Res..

[43]  Dinesh Manocha,et al.  Path Planning among Movable Obstacles: A Probabilistically Complete Approach , 2008, WAFR.

[44]  Sergey Levine,et al.  Deep visual foresight for planning robot motion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[45]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[46]  Leslie Pack Kaelbling,et al.  Focused model-learning and planning for non-Gaussian continuous state-action systems , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Siddhartha S. Srinivasa,et al.  A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty , 2012, Autonomous Robots.

[48]  Marcin Andrychowicz,et al.  Hindsight Experience Replay , 2017, NIPS.

[49]  Siddhartha S. Srinivasa,et al.  Robust trajectory selection for rearrangement planning as a multi-armed bandit problem , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).