Interest Point Detector and Feature Descriptor Survey

Many algorithms for computer vision rely on locating interest points, or keypoints in each image, and calculating a feature description from the pixel region surrounding the interest point. This is in contrast to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel intervals and the correlation is measured at each location. The interest point is the, and often provides the scale, rotational, and illumination invariance attributes for the descriptor; the descriptor adds more detail and more invariance attributes. Groups of interest points and descriptors together describe the actual objects.

[1]  T. Lømo,et al.  Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output. , 1969, UCLA forum in medical sciences.

[2]  Sepp Hochreiter,et al.  Learning to Learn Using Gradient Descent , 2001, ICANN.

[3]  F. Ade,et al.  Characterization of textures by ‘Eigenfilters’ , 1983 .

[4]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[6]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[7]  Alexander Zelinsky,et al.  A Fast Radial Symmetry Transform for Detecting Points of Interest , 2002, ECCV.

[8]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[9]  Frédo Durand,et al.  Decoupling algorithms from schedules for easy optimization of image processing pipelines , 2012, ACM Trans. Graph..

[10]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[11]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[12]  John D. Lafferty,et al.  Learning image representations from the pixel level via hierarchical sparse coding , 2011, CVPR 2011.

[13]  John E. Stone,et al.  GPU clusters for high-performance computing , 2009, 2009 IEEE International Conference on Cluster Computing and Workshops.

[14]  Dieter Fox,et al.  Multipath Sparse Coding Using Hierarchical Matching Pursuit , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Georges Quénot,et al.  TRECVID 2015 - An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2011, TRECVID.

[16]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[18]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[19]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[20]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[21]  Yoshitomo Yaginuma,et al.  A solid texture analysis based on three-dimensional convolution kernels , 2007, Electronic Imaging.

[22]  Serge J. Belongie,et al.  Matching with shape contexts , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[23]  Kristin J. Dana,et al.  Texture histograms as a function of irradiation and viewing direction , 1999, International Journal of Computer Vision.

[24]  Gary R. Bradski,et al.  Fast 3D recognition and pose using the Viewpoint Feature Histogram , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[26]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Dumitru Erhan,et al.  Scalable Object Detection Using Deep Neural Networks , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[29]  Zicheng Liu,et al.  HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[31]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[32]  King-Sun Fu,et al.  A syntactic approach to texture analysis , 1978 .

[33]  Shree K. Nayar,et al.  Diffuse structured light , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[34]  Jürgen Schmidhuber,et al.  Learning to Control Fast-Weight Memories: An Alternative to Dynamic Recurrent Networks , 1992, Neural Computation.

[35]  J. Fitch Synthetic Aperture Radar , 1987 .

[36]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[37]  Reinhard Koch,et al.  Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications , 2013, Lecture Notes in Computer Science.

[38]  Nick G. Kingsbury,et al.  Rotation-invariant local feature matching with complex wavelets , 2006, 2006 14th European Signal Processing Conference.

[39]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[40]  Shih-Fu Chang,et al.  Fast Neural Networks with Circulant Projections , 2015, ArXiv.

[41]  Manolis Kellis,et al.  Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease , 2015, Nature.

[42]  G. Kino,et al.  Confocal Scanning Optical Microscopy and Related Imaging Systems , 1996 .

[43]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Guido M. Cortelazzo,et al.  Microsoft Kinect™ Range Camera , 2012 .

[45]  Simon J. D. Prince,et al.  Computer Vision: Models, Learning, and Inference , 2012 .

[46]  Andrew Y. Ng,et al.  Convolutional-Recursive Deep Learning for 3D Object Classification , 2012, NIPS.

[47]  Jian Dong,et al.  Subcategory-Aware Object Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Ruzena Bajcsy,et al.  Computer Description of Textured Surfaces , 1973, IJCAI.

[49]  Alexander Verl,et al.  A rotation invariant feature descriptor O-DAISY and its FPGA implementation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Yongxin Yang,et al.  Deep Neural Networks for Sketch Recognition , 2015, ArXiv.

[51]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[52]  Andrew Zisserman,et al.  Efficient Visual Search of Videos Cast as Text Retrieval , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[54]  Shree K. Nayar,et al.  Multiview radial catadioptric imaging for scene capture , 2006, SIGGRAPH 2006.

[55]  Jn Morovi,et al.  Color Gamut Mapping , 2008 .

[56]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[57]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[58]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[59]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[60]  Martial Hebert,et al.  Efficient visual event detection using volumetric features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[61]  Jitendra Malik,et al.  Deformable part models are convolutional neural networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Antonio Torralba,et al.  HOGgles: Visualizing Object Detection Features , 2013, 2013 IEEE International Conference on Computer Vision.

[63]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[64]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[65]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[66]  Dieter Fox,et al.  Sparse distance learning for object recognition combining RGB and depth information , 2011, 2011 IEEE International Conference on Robotics and Automation.

[67]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[68]  Dennis Gabor,et al.  Theory of communication , 1946 .

[69]  Yoshiaki Shirai,et al.  Description of Textures by a Structural Analysis , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[71]  J. Mazille Mathematical morphology and convolutions , 1989 .

[72]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[73]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[74]  David G. Lowe,et al.  University of British Columbia. , 1945, Canadian Medical Association journal.

[75]  Azriel Rosenfeld,et al.  Gray-level corner detection , 1982, Pattern Recognit. Lett..

[76]  Dieter Fox,et al.  Kernel Descriptors for Visual Recognition , 2010, NIPS.

[77]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[78]  Jan J. Koenderink,et al.  Two-dimensional curvature operators , 1988 .

[79]  Krystian Mikolajczyk,et al.  Evaluation of local detectors and descriptors for fast feature matching , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[80]  Jiebo Luo,et al.  Recognizing realistic actions from videos , 2009, CVPR.

[81]  Mathews Jacob,et al.  Design of steerable filters for feature detection using canny-like criteria , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Stan Sclaroff,et al.  Learning a Family of Detectors via Multiplicative Kernels , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  A. Ardeshir Goshtasby,et al.  Description and Discrimination of Planar Shapes Using Shape Matrices , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[85]  Joaquim Salvi,et al.  Coded light projection techniques for 3D reconstruction , 2005 .

[86]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[87]  Albert J. P. Theuwissen,et al.  Adaptive pixel defect correction , 2003, IS&T/SPIE Electronic Imaging.

[88]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics) , 2005 .

[89]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[90]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[91]  Matthai Philipose,et al.  Egocentric recognition of handled objects: Benchmark and analysis , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[92]  Xiaokang Yang,et al.  Sub clustering K-SVD: Size variable dictionary learning for sparse representations , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[93]  C. Stefanis Interneuronal mechanisms in the cortex. , 1969, UCLA forum in medical sciences.

[94]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[95]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[96]  Rich Caruana,et al.  Model compression , 2006, KDD '06.

[97]  Narendra Ahuja,et al.  Cresceptron: a self-organizing neural network which grows adaptively , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[98]  Thomas Mensink,et al.  Image Classification with the Fisher Vector: Theory and Practice , 2013, International Journal of Computer Vision.

[99]  Dieter Fox,et al.  Object recognition with hierarchical kernel descriptors , 2011, CVPR 2011.

[100]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[101]  Aleksandra Mojsilovic A method for color naming and description of color composition in images , 2002, Proceedings. International Conference on Image Processing.

[102]  Xiaowei Zhou,et al.  3D Shape Reconstruction from 2D Landmarks: A Convex Formulation , 2014, ArXiv.

[103]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[104]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[105]  Yann LeCun,et al.  Understanding Deep Architectures using a Recursive Convolutional Network , 2013, ICLR.

[106]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[107]  Panu Turcot,et al.  Better matching with fewer features: The selection of useful features in large database recognition problems , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[108]  Jean Ponce,et al.  A Theoretical Analysis of Feature Pooling in Visual Recognition , 2010, ICML.

[109]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..

[110]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[111]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[112]  Cordelia Schmid,et al.  A maximum entropy framework for part-based texture and object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[113]  Geoffrey E. Hinton,et al.  Experiments on Learning by Back Propagation. , 1986 .

[114]  Yan Xu,et al.  GPS: Theory, Algorithms and Applications , 2003 .

[115]  Andrew Zisserman,et al.  Efficient Additive Kernels via Explicit Feature Maps , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[116]  Hermann Ney,et al.  Deformation Models for Image Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[118]  Dieter Fox,et al.  Unsupervised Feature Learning for RGB-D Based Object Recognition , 2012, ISER.

[119]  H.-S. Philip Wong,et al.  A 3D Multi-Aperture Image Sensor Architecture , 2006, IEEE Custom Integrated Circuits Conference 2006.

[120]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[121]  G. EICHMANN,et al.  Topologically invariant texture descriptors , 1988, Comput. Vis. Graph. Image Process..

[122]  Wen-Hsiung Chen,et al.  Slant Transform Image Coding , 1974, IEEE Trans. Commun..

[123]  Yann LeCun,et al.  Boxlets: A Fast Convolution Algorithm for Signal Processing and Neural Networks , 1998, NIPS.

[124]  Rob Fergus,et al.  Stochastic Pooling for Regularization of Deep Convolutional Neural Networks , 2013, ICLR.

[125]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[126]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[127]  Jian Wang,et al.  Multipath Matching Pursuit , 2013, IEEE Transactions on Information Theory.

[128]  Jürgen Schmidhuber,et al.  Multi-dimensional Recurrent Neural Networks , 2007, ICANN.

[129]  J. Goodman Introduction to Fourier optics , 1969 .

[130]  Xin Yuan,et al.  Branch elimination by condition merging , 2005, Softw. Pract. Exp..

[131]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[132]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[133]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[134]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[135]  Michael Elad,et al.  Multiscale Sparse Image Representationwith Learned Dictionaries , 2007, 2007 IEEE International Conference on Image Processing.

[136]  K. Laws Textured Image Segmentation , 1980 .

[137]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[138]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[139]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[140]  S. Dreyfus The numerical solution of variational problems , 1962 .

[141]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[143]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[144]  Matti Pietikäinen,et al.  Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[145]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[146]  Xiaolin Hu,et al.  Sparsity-Regularized HMAX for Visual Recognition , 2014, PloS one.

[147]  L. Macaire,et al.  Comparison of color demosaicing methods , 2010 .

[148]  Andrew F. Laine,et al.  Contrast enhancement by multiscale adaptive histogram equalization , 2001, SPIE Optics + Photonics.

[149]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[150]  Andrew J. Davison,et al.  Real-Time Spherical Mosaicing Using Whole Image Alignment , 2010, ECCV.

[151]  Alex Waibel,et al.  Consonant recognition by modular construction of large phonemic time-delay neural networks , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[152]  Ruzena Bajcsy,et al.  Computer identification of visual surfaces , 1973, Comput. Graph. Image Process..

[153]  Phaneendra Vinukonda A Study of the Scale-Invariant Feature Transform on a Parallel Pipeline , 2011 .

[154]  Camille Couprie,et al.  Learning Hierarchical Features for Scene Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[155]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[156]  David W. Murray,et al.  Parallel Tracking and Mapping on a camera phone , 2009, 2009 8th IEEE International Symposium on Mixed and Augmented Reality.

[157]  Bingbing Ni,et al.  Half-CNN: A General Framework for Whole-Image Regression , 2014, ArXiv.

[158]  Whoi-Yul Kim,et al.  A novel approach to the fast computation of Zernike moments , 2006, Pattern Recognit..

[159]  Alexander Verl,et al.  Evaluation of 3D feature descriptors for classification of surface geometries in point clouds , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[160]  Peter Rockett,et al.  Performance assessment of feature detection algorithms: a methodology and case study on corner detectors , 2003, IEEE Trans. Image Process..

[161]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[162]  Pierre Baldi,et al.  The Principled Design of Large-Scale Recursive Neural Network Architectures--DAG-RNNs and the Protein Structure Prediction Problem , 2003, J. Mach. Learn. Res..

[163]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[164]  Graham W. Taylor,et al.  Adaptive deconvolutional networks for mid and high level feature learning , 2011, 2011 International Conference on Computer Vision.

[165]  Nico Blodow,et al.  Combined 2D–3D categorization and classification for multimodal perception systems , 2011, Int. J. Robotics Res..

[166]  T. Poggio,et al.  Shape representation in V4: Investigating position-specific tuning for boundary conformation with the standard model of object recognition , 2010 .

[167]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[168]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[169]  Mandyam D. Srinath,et al.  Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments , 2002, Pattern Recognit..

[170]  M. Tarr Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects , 1995, Psychonomic bulletin & review.

[171]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[172]  Shree K. Nayar,et al.  Gigapixel Computational Imaging , 2011, 2011 IEEE International Conference on Computational Photography (ICCP).

[173]  Chi-Man Pun,et al.  Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[174]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[175]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[176]  Gang Wang,et al.  Convolutional recurrent neural networks: Learning spatial dependencies for image representation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[177]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[179]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[180]  Florent Perronnin,et al.  Large-scale image retrieval with compressed Fisher vectors , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[181]  Marc'Aurelio Ranzato,et al.  Sparse Feature Learning for Deep Belief Networks , 2007, NIPS.

[182]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[183]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[184]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[185]  LEARNING SIMPLE DEPENDENCIES BY POLYNOMIAL NEURAL NETWORK , 2010 .

[186]  Manuel M. Oliveira,et al.  Domain transform for edge-aware image and video processing , 2011, SIGGRAPH 2011.

[187]  Tom Schaul,et al.  High dimensions and heavy tails for natural evolution strategies , 2011, GECCO '11.

[188]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[189]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[190]  Alekseĭ Grigorʹevich Ivakhnenko,et al.  Cybernetics and forecasting techniques , 1967 .

[191]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[192]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[193]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[194]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[195]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[196]  Ivan Laptev,et al.  On Space-Time Interest Points , 2005, International Journal of Computer Vision.

[197]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[198]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[199]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[200]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[201]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[202]  Rahul Upneja,et al.  Fast and accurate method for high order Zernike moments computation , 2012, Appl. Math. Comput..

[203]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[204]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[205]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[206]  Hans-Peter Kriegel,et al.  Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..

[207]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[208]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[209]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[210]  Quoc V. Le,et al.  Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis , 2011, CVPR 2011.

[211]  Guido Gerig,et al.  Synthetic Ground Truth for Validation of Brain Tumor MRI Segmentation , 2005, MICCAI.

[212]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[213]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words , 2008, International Journal of Computer Vision.

[214]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[215]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[216]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[217]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[218]  Luc Van Gool,et al.  3D all the way: Semantic segmentation of urban scenes from start to end in 3D , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[219]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[220]  Edwin Olson,et al.  Learning convolutional filters for interest point detection , 2013, 2013 IEEE International Conference on Robotics and Automation.

[221]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[222]  Yann LeCun,et al.  Learning Invariant Feature Hierarchies , 2012, ECCV Workshops.

[223]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[224]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[225]  Nathan Intrator,et al.  Complex cells and Object Recognition , 1997 .

[226]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[227]  Michael J. Jones,et al.  Real-time 3D head pose and facial landmark estimation from depth images using triangular surface patch features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[228]  Christophe Garcia,et al.  Simplifying ConvNets for Fast Learning , 2012, ICANN.

[229]  Masayasu Ito,et al.  Control of variable structure elements in adaptive mathematical morphology for boundary enhancement of ultrasound images , 2004 .

[230]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[231]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[232]  Marc Levoy,et al.  The Frankencamera: an experimental platform for computational photography , 2010, SIGGRAPH 2010.

[233]  Mubarak Shah,et al.  A 3-dimensional sift descriptor and its application to action recognition , 2007, ACM Multimedia.

[234]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[235]  Ruowei Zhou,et al.  DCBAM: A discrete chainable bidirectional associative memory , 1996, Pattern Recognit. Lett..

[236]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[237]  Patrick Pérez,et al.  Reconstructing an image from its local descriptors , 2011, CVPR 2011.

[238]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[239]  Vladimir Estivill-Castro,et al.  Why so many clustering algorithms: a position paper , 2002, SKDD.

[240]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[241]  D. Langleben,et al.  Commentary: the future of forensic functional brain imaging. , 2008, The journal of the American Academy of Psychiatry and the Law.

[242]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[243]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[244]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[245]  Yann LeCun,et al.  Regularized estimation of image statistics by Score Matching , 2010, NIPS.

[246]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[247]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[248]  Yann LeCun,et al.  Measuring the VC-Dimension of a Learning Machine , 1994, Neural Computation.

[249]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[250]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[251]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[252]  Cor J. Veenman,et al.  Kernel Codebooks for Scene Categorization , 2008, ECCV.

[253]  Heiko Hirschmüller,et al.  Evaluation of Cost Functions for Stereo Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[254]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[255]  Selim Benhimane,et al.  Inertial sensor-aligned visual feature descriptors , 2011, CVPR 2011.

[256]  Cayley,et al.  On the Theory of Groups , 2022 .

[257]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[258]  Marc Levoy,et al.  Volume rendering using the Fourier projection-slice theorem , 1992 .

[259]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[260]  Rahul Sukthankar,et al.  D-Nets: Beyond patch-based image descriptors , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[261]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[262]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[263]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[264]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[265]  O. G. Selfridge,et al.  Pandemonium: a paradigm for learning , 1988 .

[266]  Daniel Oram Rectification for any epipolar geometry , 2001, BMVC.

[267]  Bernd Girod,et al.  Compressed Histogram of Gradients: A Low-Bitrate Descriptor , 2011, International Journal of Computer Vision.

[268]  Eero P. Simoncelli,et al.  Nonlinear image representation using divisive normalization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[269]  Ho Yub Jung,et al.  Random tree walk toward instantaneous 3D human pose estimation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[270]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[271]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[272]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[273]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[274]  Johan Karlsson,et al.  Measures for Benchmarking of Automatic Correspondence Algorithms , 2007, Journal of Mathematical Imaging and Vision.

[275]  Stanley R. Deans,et al.  Hough Transform from the Radon Transform , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[276]  Shree K. Nayar,et al.  Compressive Structured Light for Recovering Inhomogeneous Participating Media , 2008, ECCV.

[277]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[278]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[279]  Andrew Zisserman,et al.  Automated Scene Matching in Movies , 2002, CIVR.

[280]  Yuichi Yoshida,et al.  CARD: Compact And Real-time Descriptors , 2011, 2011 International Conference on Computer Vision.

[281]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[282]  Brain decoding: Reading minds , 2013, Nature.

[283]  Peter Tiňo,et al.  Finite State Machines and Recurrent Neural Networks -- Automata and Dynamical Systems Approaches , 1995 .

[284]  Akira Nomura,et al.  Morphological operations by locally variable structuring elements and their applications to region extraction in ultrasound images , 2003, Syst. Comput. Jpn..

[285]  David Heckerman,et al.  Learning With Bayesian Networks (Abstract) , 1995, ICML.

[286]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[287]  Alyosha Molnar,et al.  Light field image sensors based on the Talbot effect. , 2009, Applied optics.

[288]  M. J. Bazin,et al.  Off-Line Global Approach to Pattern Recognition for Bubble Chamber Pictures , 1965 .

[289]  Dennis Gabor The author's reply to the discussions on ¿Energy conversion in electronic devices¿ , 1946 .

[290]  P. Bach-y-Rita,et al.  Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. , 1998, Journal of rehabilitation research and development.

[291]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[292]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[293]  Slobodan Ilic,et al.  Framework for Generation of Synthetic Ground Truth Data for Driver Assistance Applications , 2013, GCPR.

[294]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[295]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[296]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[297]  L. Dixon,et al.  Automatic differentiation of algorithms , 2000 .

[298]  Shyang Chang,et al.  A new criterion for automatic multilevel thresholding , 1995, IEEE Trans. Image Process..

[299]  Rudy Lauwereins,et al.  SIFER: Scale-Invariant Feature Detector with Error Resilience , 2013, International Journal of Computer Vision.

[300]  Arthur Cayley The Collected Mathematical Papers: On the Theory of Groups as depending on the Symbolical Equation θn = 1 , 1854 .

[301]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[302]  G. Feng,et al.  Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex , 2005, PLoS biology.

[303]  Richard I. Hartley,et al.  Theory and Practice of Projective Rectification , 1999, International Journal of Computer Vision.

[304]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[305]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[306]  Yong Haur Tay,et al.  A HMAX with LLC for visual recognition , 2015, ArXiv.

[307]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[308]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[309]  Lisa Tang,et al.  Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps , 2008, MICCAI.

[310]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[311]  Jason Yosinski,et al.  Deep neural networks are easily fooled: High confidence predictions for unrecognizable images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[312]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[313]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[314]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[315]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[316]  Yann LeCun,et al.  A theoretical framework for back-propagation , 1988 .

[317]  Yong Du,et al.  Hierarchical recurrent neural network for skeleton based action recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[318]  C. Schmid,et al.  Description of Interest Regions with Center-Symmetric Local Binary Patterns , 2006, ICVGIP.

[319]  Tom Drummond,et al.  Robust feature matching in 2.3µs , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[320]  Gregory A. Baxes,et al.  Digital image processing - principles and applications , 1994 .

[321]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[322]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[323]  Andrew Y. Ng,et al.  The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization , 2011, ICML.

[324]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[325]  David J. Fleet,et al.  Performance of optical flow techniques , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[326]  Christian Zinner,et al.  ROS-DMA: A DMA Double Buffering Method for Embedded Image Processing with Resource Optimized Slicing , 2006, 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06).

[327]  Shu Liao,et al.  Texture Classification by using Advanced Local Binary Patterns and Spatial Distribution of Dominant Patterns , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[328]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[329]  Shree K. Nayar,et al.  Towards a true spherical camera , 2009, Electronic Imaging.

[330]  Amar Mitiche,et al.  Review of 'Digital Picture Processing,' 2nd edn. (Rosenfeld, A., and Kak, A.C.; 1982) , 1984, IEEE Transactions on Information Theory.

[331]  J. Elman Distributed representations, simple recurrent networks, and grammatical structure , 1991, Machine Learning.

[332]  Yali Amit,et al.  POP: Patchwork of Parts Models for Object Recognition , 2007, International Journal of Computer Vision.

[333]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[334]  T. Higuchi,et al.  High-Accuracy Subpixel Image Registration Based on Phase-Only Correlation , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[335]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[336]  Steve Mann,et al.  OpenVIDIA: parallel GPU computer vision , 2005, ACM Multimedia.

[337]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[338]  Christopher Joseph Pal,et al.  Learning Conditional Random Fields for Stereo , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[339]  Tal Hassner,et al.  LATCH: Learned arrangements of three patch codes , 2015, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[340]  Robert W. G. Hunt,et al.  Measuring Colour: Hunt/Measuring Colour , 2011 .

[341]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[342]  Thomas L. Dean,et al.  Recursive Sparse, Spatiotemporal Coding , 2009, 2009 11th IEEE International Symposium on Multimedia.

[343]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[344]  Daniel E. Clark,et al.  The Cramer-Rao Lower Bound for 3-D state estimation from rectified stereo cameras , 2010, 2010 13th International Conference on Information Fusion.

[345]  Christian Zinner,et al.  PfeLib—A Performance Primitives Library for Embedded Vision , 2007, EURASIP J. Embed. Syst..

[346]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[347]  Kunihiko Fukushima,et al.  Training multi-layered neural network neocognitron , 2013, Neural Networks.

[348]  一岡 芳樹,et al.  J. D. Gaskill: Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, New York, 1978, xiv+554ページ, 23.5×15.5cm, $24.96 (Wiley Sons in Pure and Applied Optics). , 1979 .

[349]  Stefano Soatto,et al.  Knowing a Good Feature When You See It: Ground Truth and Methodology to Evaluate Local Features for Recognition , 2010, Computer Vision: Detection, Recognition and Reconstruction.

[350]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[351]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[352]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[353]  Adrien Bartoli,et al.  KAZE Features , 2012, ECCV.

[354]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[355]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[356]  Martin T. Hagan,et al.  Neural network design , 1995 .

[357]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[358]  Shree K. Nayar,et al.  Computational Cameras: Approaches, Benefits and Limits , 2011 .

[359]  Jianxiong Xiao,et al.  Localizing 3D cuboids in single-view images , 2012, NIPS.

[360]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[361]  Mikael Bodén,et al.  A guide to recurrent neural networks and backpropagation , 2001 .

[362]  Marloes H. Maathuis,et al.  Current status data with competing risks: Consistency and rates of convergence of the MLE , 2006 .

[363]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[364]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[365]  Peter Aundal Toft Using the generalized Radon transform for detection of curves in noisy images , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[366]  M. Kozubek,et al.  Confocal microscopy by aperture correlation. , 1996, Optics letters.

[367]  Ha Hong,et al.  Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream , 2013, NIPS.

[368]  P. Hanrahan,et al.  Light Field Photography with a Hand-held Plenoptic Camera , 2005 .

[369]  Deva Ramanan,et al.  Histograms of Sparse Codes for Object Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[370]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[371]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[372]  D. Frost,et al.  Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[373]  Jie Zhu,et al.  Subpixel eye gaze tracking , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[374]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[375]  Rajesh P. N. Rao,et al.  Bilinear Sparse Coding for Invariant Vision , 2005, Neural Computation.

[376]  Qi Tian,et al.  Algorithms for subpixel registration , 1986 .

[377]  Scott B. Steinman,et al.  Foundations of Binocular Vision: A Clinical Perspective , 2000 .

[378]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[379]  Shree K. Nayar,et al.  Ieee Transactions on Image Processing Computational Cameras: Convergence of Optics and Processing , 2022 .

[380]  K. L. Lee,et al.  A New Method for Coarse Classification of Textures and Class Weight Estimation for Texture Retrieval 1 , 2002 .

[381]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[382]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[383]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[384]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[385]  Yannis Avrithis,et al.  To Aggregate or Not to aggregate: Selective Match Kernels for Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[386]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[387]  Koen E. A. van de Sande,et al.  Fisher and VLAD with FLAIR , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[388]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[389]  Xiaolin Hu,et al.  Recurrent convolutional neural network for object recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[390]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[391]  Thomas Serre,et al.  Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex , 2004 .

[392]  Luis Miguel Bergasa,et al.  Gauge-SURF descriptors , 2013, Image Vis. Comput..

[393]  Thomas L. Dean,et al.  Sparse Spatiotemporal Coding for Activity Recognition , 2010 .

[394]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.

[395]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[396]  Mike J. Chantler,et al.  Real-time per-pixel rendering of textiles for virtual textile catalogues , 2003 .

[397]  Xiaofeng Ren,et al.  Figure-ground segmentation improves handled object recognition in egocentric video , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[398]  Peter Jackson,et al.  Introduction to expert systems , 1986 .

[399]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[400]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[401]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[402]  Ce Liu,et al.  Deformable Spatial Pyramid Matching for Fast Dense Correspondences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[403]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[404]  Nicolai Petkov,et al.  Comparison of texture features based on Gabor filters , 2002, IEEE Trans. Image Process..

[405]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[406]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[407]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[408]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[409]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[410]  Vincent Lepetit,et al.  A Fully Automated Approach to Segmentation of Irregularly Shaped Cellular Structures in EM Images , 2010, MICCAI.

[411]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[412]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[413]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[414]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[415]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[416]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[417]  Fahad Shahbaz Khan,et al.  Discriminative Color Descriptors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[418]  Edward H. Adelson,et al.  Exploring features in a Bayesian framework for material recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[419]  Simon J. D. Prince,et al.  Computer Vision: Index , 2012 .

[420]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[421]  Manik Varma,et al.  Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[422]  Tieniu Tan,et al.  Feature Coding in Image Classification: A Comprehensive Study , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[423]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[424]  Tamir Hazan,et al.  Algebraic Set Kernels with Application to Inference Over Local Image Representations , 2004, NIPS.

[425]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[426]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[427]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[428]  Shengen Yan,et al.  Deep Image: Scaling up Image Recognition , 2015, ArXiv.

[429]  Ryohei Nakano,et al.  Stable behavior in a recurrent neural network for a finite state machine , 2000, Neural Networks.

[430]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[431]  Wojciech Zaremba,et al.  Reinforcement Learning Neural Turing Machines , 2015, ArXiv.

[432]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[433]  Ali Shahrokni,et al.  Overall evaluation of the PETS2009 results , 2009 .

[434]  Jack Sklansky,et al.  The Detection and Segmentation of Blobs in Infrared Images , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[435]  R. Garg,et al.  Histogram Equalization Techniques For Image Enhancement , 2011 .

[436]  Plamen Angelov,et al.  Data density based clustering , 2014, 2014 14th UK Workshop on Computational Intelligence (UKCI).

[437]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[438]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[439]  A. E. Bryson,et al.  A Steepest-Ascent Method for Solving Optimum Programming Problems , 1962 .

[440]  Yoshua Bengio,et al.  FitNets: Hints for Thin Deep Nets , 2014, ICLR.

[441]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[442]  Caihua Chen,et al.  Thin infrared imaging systems through multichannel sampling. , 2008, Applied optics.

[443]  Cordelia Schmid,et al.  Convolutional Kernel Networks , 2014, NIPS.

[444]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[445]  Derek Hoiem,et al.  Completing 3D object shape from one depth image , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[446]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[447]  Paul L. Rosin Measuring Corner Properties , 1999, Comput. Vis. Image Underst..

[448]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[449]  Sos S. Agaian,et al.  Parametric Slant-Hadamard transforms , 2003, IS&T/SPIE Electronic Imaging.

[450]  R. Berns Billmeyer and Saltzman's Principles of Color Technology , 2000 .

[451]  Todd Jochem,et al.  Life in the Fast Lane: The Evolution of an Adaptive Vehicle Control System , 1996, AI Mag..

[452]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[453]  Andrew K. C. Wong,et al.  Resolution-Dependent Information Measures for Image Analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[454]  Jürgen Schmidhuber,et al.  Learning Complex, Extended Sequences Using the Principle of History Compression , 1992, Neural Computation.

[455]  Miroslaw Pawlak,et al.  Image Reconstruction with Polar Zernike Moments , 2005, ICAPR.

[456]  Kunihiko Fukushima,et al.  Artificial vision by multi-layered neural networks: Neocognitron and its advances , 2013, Neural Networks.

[457]  C. Zach Fast and High Quality Fusion of Depth Maps , 2008 .

[458]  Tieniu Tan,et al.  Brief review of invariant texture analysis methods , 2002, Pattern Recognit..

[459]  Thomas Brox,et al.  A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[460]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[461]  Jürgen Schmidhuber,et al.  Deep Networks with Internal Selective Attention through Feedback Connections , 2014, NIPS.

[462]  Matti Pietikäinen,et al.  Human Activity Recognition Using a Dynamic Texture Based Method , 2008, BMVC.

[463]  Lei Zhang,et al.  Image demosaicing: a systematic survey , 2008, Electronic Imaging.

[464]  Dieter Fox,et al.  Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms , 2011, NIPS.

[465]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[466]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[467]  Kelvin Sung,et al.  Spatial-Temporal Antialiasing , 2002, IEEE Trans. Vis. Comput. Graph..

[468]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[469]  Horace Ho-Shing Ip,et al.  Adaptive Pyramid Approach to Texture Segmentation , 1993, CAIP.

[470]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[471]  Nicolas Le Roux,et al.  Ask the locals: Multi-way local pooling for image recognition , 2011, 2011 International Conference on Computer Vision.

[472]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[473]  Julien Mairal,et al.  Learning hierarchical and topographic dictionaries with structured sparsity , 2011, Optical Engineering + Applications.

[474]  Henry J. Kelley,et al.  Gradient Theory of Optimal Flight Paths , 1960 .

[475]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[476]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[477]  Peter Auer,et al.  A learning rule for very simple universal approximators consisting of a single layer of perceptrons , 2008, Neural Networks.

[478]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[479]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[480]  Francesc Moreno-Noguer,et al.  Spatiotemporal Descriptor for Wide-Baseline Stereo Reconstruction of Non-rigid and Ambiguous Scenes , 2012, ECCV.

[481]  Paul L. Rosin Augmenting Corner Descriptors , 1996, CVGIP Graph. Model. Image Process..

[482]  Oliver Cossairt,et al.  Spectral Focal Sweep: Extended depth of field from chromatic aberrations , 2010, 2010 IEEE International Conference on Computational Photography (ICCP).

[483]  Steve R. Gunn Edge detection error in the discrete Laplacian of Gaussian , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[484]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[485]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[486]  R.W.G. Hunt,et al.  The Reproduction of Colour: Hunt/Reproduction of Colour , 2005 .

[487]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[488]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[489]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[490]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[491]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[492]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[493]  Ruzena Bajcsy,et al.  Texture gradient as a depth cue , 1976 .

[494]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[495]  Horace Ho-Shing Ip,et al.  Structural texture segmentation using irregular pyramid , 1994, Pattern Recognit. Lett..

[496]  Luc Van Gool,et al.  Simultaneous Object Recognition and Segmentation from Single or Multiple Model Views , 2006, International Journal of Computer Vision.

[497]  Marcus Liwicki,et al.  Scene labeling with LSTM recurrent neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[498]  R. Bracewell The Fourier transform. , 1989, Scientific American.

[499]  Ingemar J. Cox,et al.  Cylindrical rectification to minimize epipolar distortion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[500]  Dimitris A. Karras,et al.  Image coding using a wavelet based Zernike moments compression technique , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[501]  James M. Rehg,et al.  Learning to Recognize Daily Actions Using Gaze , 2012, ECCV.

[502]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[503]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[504]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[505]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[506]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[507]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[508]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[509]  Gary R. Bradski,et al.  REIN - A fast, robust, scalable REcognition INfrastructure , 2011, 2011 IEEE International Conference on Robotics and Automation.

[510]  Raanan Fattal Edge-avoiding wavelets and their applications , 2009, SIGGRAPH 2009.

[511]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[512]  Christoph H. Lampert Kernel Methods in Computer Vision , 2009, Found. Trends Comput. Graph. Vis..

[513]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[514]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[515]  Jan-Michael Frahm,et al.  3D Reconstruction Using an n-Layer Heightmap , 2010, DAGM-Symposium.

[516]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[517]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[518]  Jitendra Malik,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[519]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[520]  Leonidas J. Guibas,et al.  Human action recognition by learning bases of action attributes and parts , 2011, 2011 International Conference on Computer Vision.

[521]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[522]  Cordelia Schmid,et al.  Segmentation Driven Object Detection with Fisher Vectors , 2013, 2013 IEEE International Conference on Computer Vision.

[523]  Berin Martini,et al.  Large-Scale FPGA-based Convolutional Networks , 2011 .

[524]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[525]  Yi Yang,et al.  Articulated pose estimation with flexible mixtures-of-parts , 2011, CVPR 2011.

[526]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[527]  Marek Kraft,et al.  Comparative assessment of point feature detectors in the context of robot navigation , 2013 .

[528]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[529]  Larry S. Davis Computing the spatial structures of cellular textures , 1979 .

[530]  Berthold K. P. Horn SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .

[531]  A.B.M Salem A vertex chain code approach for image recognition , 2013 .

[532]  Dah-Jye Lee,et al.  The Nature-Inspired BASIS Feature Descriptor for UAV Imagery and Its Hardware Implementation , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[533]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[534]  Pascal Fua,et al.  Worldwide Pose Estimation Using 3D Point Clouds , 2012, ECCV.

[535]  Olivier D. Faugeras,et al.  A theory of self-calibration of a moving camera , 1992, International Journal of Computer Vision.

[536]  R. Wong,et al.  Scene matching with invariant moments , 1978 .

[537]  Silvio Savarese,et al.  Data-driven 3D Voxel Patterns for object category recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[538]  Daijin Kim,et al.  Robust face detection using local gradient patterns and evidence accumulation , 2012, Pattern Recognit..

[539]  Tony Lindeberg,et al.  Junction detection with automatic selection of detection scales and localization scales , 1994, Proceedings of 1st International Conference on Image Processing.

[540]  Jürgen Schmidhuber,et al.  Training Recurrent Networks by Evolino , 2007, Neural Computation.

[541]  Shree K. Nayar,et al.  High Dynamic Range from Multiple Images: Which Exposures to Combine?∗ , 2003 .

[542]  Richard S. Zemel,et al.  Exploring Models and Data for Image Question Answering , 2015, NIPS.

[543]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[544]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[545]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[546]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[547]  H. Enomoto,et al.  Orthogonal Transform Coding System for Television Signals , 1971 .

[548]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[549]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[550]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[551]  Pietro Perona,et al.  Visual Recognition with Humans in the Loop , 2010, ECCV.

[552]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[553]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[554]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[555]  G. Quénot,et al.  Particle image velocimetry with optical flow , 1998 .

[556]  Marc'Aurelio Ranzato,et al.  Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[557]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[558]  Frédo Durand,et al.  Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines , 2013, PLDI 2013.

[559]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[560]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[561]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[562]  Baohua Yuan,et al.  Combining Local Binary Pattern and Local Phase Quantization for Face Recognition , 2012, 2012 International Symposium on Biometrics and Security Technologies.

[563]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[564]  Antonios Gasteratos,et al.  Review of Stereo Vision Algorithms: From Software to Hardware , 2008 .

[565]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[566]  Yoshitomo Yaginuma,et al.  A Shape Feature Extraction Method Based on 3D Convolution Masks , 2006, Eighth IEEE International Symposium on Multimedia (ISM'06).

[567]  Berin Martini,et al.  Hardware accelerated convolutional neural networks for synthetic vision systems , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[568]  C. Lawrence Zitnick,et al.  The role of features, algorithms and data in visual recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[569]  Xiaofeng Ren,et al.  Discriminatively Trained Sparse Code Gradients for Contour Detection , 2012, NIPS.

[570]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[571]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[572]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[573]  J. Reynolds,et al.  Trade-off between curvature tuning and position invariance in visual area V4 , 2013, Proceedings of the National Academy of Sciences.

[574]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[575]  Dieter Fox,et al.  RGB-D flow: Dense 3-D motion estimation using color and depth , 2013, 2013 IEEE International Conference on Robotics and Automation.

[576]  T. Strohmer,et al.  Gabor Analysis and Algorithms , 2012 .

[577]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[578]  Dinggang Shen,et al.  Discriminative wavelet shape descriptors for recognition of 2-D patterns , 1999, Pattern Recognit..

[579]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[580]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[581]  C. Schmid,et al.  Object Class Recognition Using Discriminative Local Features , 2005 .

[582]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[583]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[584]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[585]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[586]  Lawrence D. Jackel,et al.  Learning Curves: Asymptotic Values and Rate of Convergence , 1993, NIPS.

[587]  Matthieu Cord,et al.  HMAX-S: Deep scale representation for biologically inspired image categorization , 2011, 2011 18th IEEE International Conference on Image Processing.

[588]  Pierre Vandergheynst,et al.  Cascade of descriptors to detect and track objects across any network of cameras , 2010, Comput. Vis. Image Underst..

[589]  Mark Hedley,et al.  Fast corner detection , 1998, Image Vis. Comput..

[590]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.

[591]  George Wolberg,et al.  Digital image warping , 1990 .

[592]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[593]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[594]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[595]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[596]  Marius Tico,et al.  Artifact-free High Dynamic Range imaging , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[597]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[598]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[599]  Pierre Vandergheynst,et al.  Beyond bits: Reconstructing images from Local Binary Descriptors , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[600]  Shaogang Gong,et al.  Sparse Multiscale Local Binary Patterns , 2006, BMVC.

[601]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[602]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[603]  Paul Bach-y-Rita,et al.  Seeing with the Brain , 2003, Int. J. Hum. Comput. Interact..

[604]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[605]  L. Thibos,et al.  Standards for reporting the optical aberrations of eyes. , 2002, Journal of refractive surgery.

[606]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[607]  Jun Zhu,et al.  Revisit Long Short-Term Memory: An Optimization Perspective , 2015 .

[608]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[609]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[610]  N. Ricker,et al.  Wavelet Contraction, Wavelet Expansion, and the Control of Seismic Resolution , 1953 .

[611]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[612]  Jürgen Schmidhuber,et al.  Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks , 2008, NIPS.

[613]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[614]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[615]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[616]  Siddhartha S. Srinivasa,et al.  MOPED: A scalable and low latency object recognition and pose estimation system , 2010, 2010 IEEE International Conference on Robotics and Automation.

[617]  Nitish Srivastava,et al.  Initialization Strategies of Spatio-Temporal Convolutional Neural Networks , 2015, ArXiv.

[618]  M. Tarr News On Views: Pandemonium Revisited , 1999, Nature Neuroscience.

[619]  Han Wang,et al.  Real-time corner detection algorithm for motion estimation , 1995, Image Vis. Comput..

[620]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[621]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[622]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[623]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[624]  Yoshua Bengio,et al.  The Statistical Inefficiency of Sparse Coding for Images (or, One Gabor to Rule them All) , 2011, ArXiv.

[625]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[626]  Marc Pollefeys,et al.  Segment based 3D object shape priors , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[627]  Federico Tombari,et al.  A combined texture-shape descriptor for enhanced 3D feature matching , 2011, 2011 18th IEEE International Conference on Image Processing.

[628]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[629]  Karl Rohr Landmark-Based Image Analysis: Using Geometric And Intensity Models , 2010 .

[630]  Jürgen Schmidhuber,et al.  Compete to Compute , 2013, NIPS.

[631]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[632]  A W Roe,et al.  Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[633]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[634]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[635]  Takeo Kanade,et al.  Inertial-aided KLT feature tracking for a moving camera , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[636]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[637]  Ronald J. Williams,et al.  Gradient-based learning algorithms for recurrent networks and their computational complexity , 1995 .

[638]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[639]  Marc Levoy Experimental Platforms for Computational Photography , 2010, IEEE Computer Graphics and Applications.

[640]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[641]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[642]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[643]  Razvan Pascanu,et al.  How to Construct Deep Recurrent Neural Networks , 2013, ICLR.

[644]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[645]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[646]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[647]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[648]  Bernd Jähne,et al.  Localization accuracy of region detectors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[649]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[650]  Afzal Godil,et al.  Evaluation of 3D interest point detection techniques via human-generated ground truth , 2012, The Visual Computer.

[651]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[652]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[653]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[654]  Gang Wang,et al.  Quaddirectional 2D-Recurrent Neural Networks For Image Labeling , 2015, IEEE Signal Processing Letters.

[655]  Mind-reading with a brain scan , 2008 .

[656]  Anthony Ralston,et al.  Encyclopedia of computer science and engineering , 1983 .

[657]  Cordelia Schmid,et al.  Learning Color Names from Real-World Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[658]  P. S. Sathidevi,et al.  Wavelet SIFT Feature Descriptors for Robust Face Recognition , 2012, ACITY.

[659]  K. Conzelmann,et al.  A Critical Period for Experience-Dependent Remodeling of Adult-Born Neuron Connectivity , 2015, Neuron.

[660]  Fumiaki Tomita,et al.  Computer analysis of visual textures , 1990 .

[661]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[662]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, CVPR.

[663]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[664]  B. Dias,et al.  Parental olfactory experience influences behavior and neural structure in subsequent generations , 2013, Nature Neuroscience.

[665]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[666]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[667]  Deva Ramanan,et al.  Detecting activities of daily living in first-person camera views , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[668]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[669]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[670]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[671]  Lars Bretzner,et al.  Feature Tracking with Automatic Selection of Spatial Scales , 1998, Comput. Vis. Image Underst..

[672]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[673]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[674]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[675]  Bernd Girod,et al.  Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[676]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[677]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[678]  Saburo Ikeda,et al.  Sequential GMDH Algorithm and Its Application to River Flow Prediction , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[679]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[680]  Alex Graves,et al.  Generating Sequences With Recurrent Neural Networks , 2013, ArXiv.

[681]  Heung-Kyu Lee,et al.  Invariant image watermark using Zernike moments , 2003, IEEE Trans. Circuits Syst. Video Technol..