Contact Mode Guided Motion Planning for Dexterous Manipulation

Within the field of robotic manipulation, a central goal is to replicate the human ability to manipulate any object in any situation using a sequence of manipulation primitives such as grasping, pushing, inserting, sliding, etc. Conceptually, each manipulation primitive restricts the object and robot to move on a lower-dimensional manifold defined by the primitive’s dynamic equations of motion. Likewise, a manipulation sequence represents a dynamically feasible trajectory that traverses multiple manifolds. To manipulate any object in any situation, robotic systems must include the ability to automatically synthesize manipulation primitives (manifolds) and sequence those primitives into a coherent plan (find a path across the manifolds). This paper investigates a principled approach for solving dexterous manipulation planning. This approach is based on rapidly-exploring random trees which use contact modes to guide tree expansion along primitive manifolds [10]. This paper extends this algorithm from 2D domains to 3D domains. We validated our algorithm on a large collection of simulated 3D manipulation tasks. These tasks required our algorithm to sequence between 6-42 manipulation primitives (i.e. distinct contact modes). We believe this work represents an important step towards robotic manipulation capabilities which generalize across objects and environments.

[1]  Jing Xiao,et al.  Planning Motions Compliant to Complex Contact States , 2001, Int. J. Robotics Res..

[2]  Kensuke Harada,et al.  Developing and Comparing Single-Arm and Dual-Arm Regrasp , 2015, IEEE Robotics and Automation Letters.

[3]  Masayuki Inaba,et al.  Pivoting: A new method of graspless manipulation of object by robot fingers , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[4]  Andrés Valenzuela,et al.  Mixed-integer convex optimization for planning aggressive motions of legged robots over rough terrain , 2016 .

[5]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[6]  Xianyi Cheng,et al.  Contact Mode Guided Sampling-Based Planning for Quasistatic Dexterous Manipulation in 2D , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Siddhartha S. Srinivasa,et al.  Convergent Planning , 2016, IEEE Robotics and Automation Letters.

[8]  Matthew T. Mason,et al.  A general framework for open-loop pivoting , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Kevin M. Lynch,et al.  Planning and control for dynamic, nonprehensile, and hybrid manipulation tasks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[10]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[11]  Matthew T. Mason,et al.  Mechanics and Planning of Manipulator Pushing Operations , 1986 .

[12]  R. Byrne,et al.  Manual dexterity in the gorilla: bimanual and digit role differentiation in a natural task , 2001, Animal Cognition.

[13]  Siddhartha S. Srinivasa,et al.  Extrinsic dexterity: In-hand manipulation with external forces , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[15]  Florentin Wörgötter,et al.  Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Xianyi Cheng,et al.  Efficient Contact Mode Enumeration in 3D , 2021, WAFR.

[17]  Jing Xiao,et al.  Automatic Generation of High-Level Contact State Space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  Matthew T. Mason,et al.  Manipulation with Shared Grasping , 2020, Robotics: Science and Systems.

[19]  Tamio Arai,et al.  Motion planning of robot fingertips for graspless manipulation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[21]  Russ Tedrake,et al.  A direct method for trajectory optimization of rigid bodies through contact , 2014, Int. J. Robotics Res..

[22]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[23]  Zoran Popovic,et al.  Contact-invariant optimization for hand manipulation , 2012, SCA '12.

[24]  Siddhartha S. Srinivasa,et al.  Manipulation planning on constraint manifolds , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Hideya Yamaguchi,et al.  Randomized manipulation planning for a multi-fingered hand by switching contact modes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[26]  Danica Kragic,et al.  Dual-Arm In-Hand Manipulation and Regrasping Using Dexterous Manipulation Graphs , 2019, ArXiv.

[27]  Scott Kuindersma,et al.  Variational Contact-Implicit Trajectory Optimization , 2017, ISRR.

[28]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[29]  Siddhartha S. Srinivasa,et al.  Constrained Manipulation Planning , 2011 .

[30]  Marc Toussaint,et al.  Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning , 2018, Robotics: Science and Systems.

[31]  Leslie Pack Kaelbling,et al.  Hierarchical planning for multi-contact non-prehensile manipulation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  Alberto Rodriguez,et al.  Tactile Dexterity: Manipulation Primitives with Tactile Feedback , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Kenneth Salisbury,et al.  Whole arm manipulation , 1988 .

[34]  Siddhartha S. Srinivasa,et al.  DART: Dynamic Animation and Robotics Toolkit , 2018, J. Open Source Softw..

[35]  Ruben Grandia,et al.  Contact-Implicit Trajectory Optimization for Dynamic Object Manipulation , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Jeffrey C. Trinkle,et al.  Contact modes and complementary cones , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  Alberto Rodriguez,et al.  The complexities of grasping in the wild , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[38]  Matthew T. Mason,et al.  Fast Planning for 3D Any-Pose-Reorienting Using Pivoting , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Neel Doshi,et al.  Hybrid Differential Dynamic Programming for Planar Manipulation Primitives , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Alberto Rodriguez,et al.  Prehensile pushing: In-hand manipulation with push-primitives , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Leslie Pack Kaelbling,et al.  A hierarchical approach to manipulation with diverse actions , 2013, 2013 IEEE International Conference on Robotics and Automation.

[42]  Leslie Pack Kaelbling,et al.  A constraint-based method for solving sequential manipulation planning problems , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Jeffrey C. Trinkle,et al.  A framework for planning dexterous manipulation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[44]  Jing Xiao,et al.  Automatic Generation of High-level Contact State Space between 3D Curved Objects , 2008, Int. J. Robotics Res..

[45]  Lydia E. Kavraki,et al.  Exploring implicit spaces for constrained sampling-based planning , 2019, Int. J. Robotics Res..