The CRISP theory of hippocampal function in episodic memory

Over the past four decades, a “standard framework” has emerged to explain the neural mechanisms of episodic memory storage. This framework has been instrumental in driving hippocampal research forward and now dominates the design and interpretation of experimental and theoretical studies. It postulates that cortical inputs drive plasticity in the recurrent cornu ammonis 3 (CA3) synapses to rapidly imprint memories as attractor states in CA3. Here we review a range of experimental studies and argue that the evidence against the standard framework is mounting, notwithstanding the considerable evidence in its support. We propose CRISP as an alternative theory to the standard framework. CRISP is based on Context Reset by dentate gyrus (DG), Intrinsic Sequences in CA3, and Pattern completion in cornu ammonis 1 (CA1). Compared to previous models, CRISP uses a radically different mechanism for storing episodic memories in the hippocampus. Neural sequences are intrinsic to CA3, and inputs are mapped onto these intrinsic sequences through synaptic plasticity in the feedforward projections of the hippocampus. Hence, CRISP does not require plasticity in the recurrent CA3 synapses during the storage process. Like in other theories DG and CA1 play supporting roles, however, their function in CRISP have distinct implications. For instance, CA1 performs pattern completion in the absence of CA3 and DG contributes to episodic memory retrieval, increasing the speed, precision, and robustness of retrieval. We propose the conceptual theory, discuss its implications for experimental results and suggest testable predictions. It appears that CRISP not only accounts for those experimental results that are consistent with the standard framework, but also for results that are at odds with the standard framework. We therefore suggest that CRISP is a viable, and perhaps superior, theory for the hippocampal function in episodic memory.

[1]  R. Kesner,et al.  The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat , 2005, Hippocampus.

[2]  J. Knierim The hippocampus , 2015, Current Biology.

[3]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[4]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  M. Gluck,et al.  Hippocampal mediation of stimulus representation: A computational theory , 1993, Hippocampus.

[6]  Yadin Dudai,et al.  The Janus face of Mnemosyne , 2005, Nature.

[7]  E Gould,et al.  Hippocampal neurogenesis in adult Old World primates. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Lisa M. Saksida,et al.  Running enhances spatial pattern separation in mice , 2010, Proceedings of the National Academy of Sciences.

[9]  M. Corballis,et al.  A role for the hippocampus in encoding simulations of future events , 2011, Proceedings of the National Academy of Sciences.

[10]  Inah Lee,et al.  A Double Dissociation between Hippocampal Subfields Differential Time Course of CA3 and CA1 Place Cells for Processing Changed Environments , 2004, Neuron.

[11]  R. Kesner,et al.  The role of the hippocampus in the retrieval of a spatial location , 2005, Neurobiology of Learning and Memory.

[12]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[13]  M. Hasselmo Neuromodulation: acetylcholine and memory consolidation , 1999, Trends in Cognitive Sciences.

[14]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[15]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[16]  O. Steward,et al.  Rapid Activation of Plasticity-Associated Gene Transcription in Hippocampal Neurons Provides a Mechanism for Encoding of One-Trial Experience , 2009, The Journal of Neuroscience.

[17]  Brigitte Landeau,et al.  The Hippocampus Remains Activated over the Long Term for the Retrieval of Truly Episodic Memories , 2012, PloS one.

[18]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[19]  James J. Knierim,et al.  Functional Differences in the Backward Shifts of CA1 and CA3 Place Fields in Novel and Familiar Environments , 2012, PloS one.

[20]  W B Levy,et al.  A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal‐like tasks , 1996, Hippocampus.

[21]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[22]  Alexander J. Rivest,et al.  Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory , 2011, Science.

[23]  Kristin N. Mauldin,et al.  Role of the hippocampus in remembering the past and imagining the future , 2010, Proceedings of the National Academy of Sciences.

[24]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[25]  York Winter,et al.  Absent or Low Rate of Adult Neurogenesis in the Hippocampus of Bats (Chiroptera) , 2007, PloS one.

[26]  Paul E. Gilbert,et al.  Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1 , 2001, Hippocampus.

[27]  Christoph Schmidt-Hieber,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[28]  Shinji Watanabe,et al.  Role for a cortical input to hippocampal area CA 1 in the consolidation of a long-termmemory , 2004 .

[29]  Gerd Kempermann,et al.  Murine Features of Neurogenesis in the Human Hippocampus across the Lifespan from 0 to 100 Years , 2010, PloS one.

[30]  Elizabeth Gould,et al.  Is there a link between adult neurogenesis and learning? , 2006, Hippocampus.

[31]  J. Lisman,et al.  Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine , 2001, Hippocampus.

[32]  Susumu Tonegawa,et al.  Hippocampal CA3 Output Is Crucial for Ripple-Associated Reactivation and Consolidation of Memory , 2009, Neuron.

[33]  Craig Weiss,et al.  Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat , 1999, Behavioural Brain Research.

[34]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[35]  Sen Cheng,et al.  Reactivation, Replay, and Preplay: How It Might All Fit Together , 2011, Neural plasticity.

[36]  S. Cheng,et al.  The structure of networks that produce the transformation from grid cells to place cells , 2011, Neuroscience.

[37]  Laurenz Wiskott,et al.  A functional hypothesis for adult hippocampal neurogenesis: Avoidance of catastrophic interference in the dentate gyrus , 2006, Hippocampus.

[38]  R. Kesner,et al.  Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus , 2004, Hippocampus.

[39]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[40]  Asohan Amarasingham,et al.  Predicting the Distribution of Synaptic Strengths and Cell Firing Correlations in a Self-Organizing, Sequence Prediction Model , 1998, Neural Computation.

[41]  Alison R Preston,et al.  Hippocampal contribution to the novel use of relational information in declarative memory , 2004, Hippocampus.

[42]  Joseph E LeDoux,et al.  Cellular and Systems Reconsolidation in the Hippocampus , 2002, Neuron.

[43]  Tim Shallice,et al.  Recollection and familiarity in dense hippocampal amnesia: A case study , 2006, Neuropsychologia.

[44]  M. Hasselmo,et al.  The hippocampus as an associator of discontiguous events , 1998, Trends in Neurosciences.

[45]  Nachum Ulanovsky,et al.  Large-scale navigational map in a mammal , 2011, Proceedings of the National Academy of Sciences.

[46]  D. J. Lewis,et al.  Retrograde Amnesia Produced by Electroconvulsive Shock after Reactivation of a Consolidated Memory Trace , 1968, Science.

[47]  G. Buzsáki,et al.  Selective suppression of hippocampal ripples impairs spatial memory , 2009, Nature Neuroscience.

[48]  J. Bolhuis,et al.  Retrograde Amnesia and Memory Reactivation in Rats with Ibotenate Lesions to the Hippocampus or Subiculum , 1994, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[49]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[50]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[51]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[52]  L. Nadel,et al.  Memory consolidation, retrograde amnesia and the hippocampal complex , 1997, Current Opinion in Neurobiology.

[53]  M. Fanselow,et al.  Modality-specific retrograde amnesia of fear. , 1992, Science.

[54]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  H. Eichenbaum,et al.  Critical role of the hippocampus in memory for sequences of events , 2002, Nature Neuroscience.

[56]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[57]  M. Mishkin,et al.  Differential effects of early hippocampal pathology on episodic and semantic memory. , 1997, Science.

[58]  Daniel L. Schacter,et al.  The Seven Sins of Memory: How the Mind Forgets and Remembers , 2001 .

[59]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[60]  C. Gross,et al.  Diminished adult neurogenesis in the marmoset brain precedes old age , 2007, Proceedings of the National Academy of Sciences.

[61]  S. Becker,et al.  Remembering the past and imagining the future: a neural model of spatial memory and imagery. , 2007, Psychological review.

[62]  Günther Palm,et al.  Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states , 1992 .

[63]  Michael E. Hasselmo,et al.  A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning , 2002, Neural Computation.

[64]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[65]  Wayne A. Wickelgren,et al.  Chunking and consolidation: A theoretical synthesis of semantic networks configuring in conditioning , 1979 .

[66]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[67]  R P Kesner,et al.  Memory for Spatial Location: Role of the Hippocampus in Mediating Spatial Pattern Separation , 1998, The Journal of Neuroscience.

[68]  G. Buzsáki,et al.  Forward and reverse hippocampal place-cell sequences during ripples , 2007, Nature Neuroscience.

[69]  Jason S. Snyder,et al.  Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. , 2001, Journal of neurophysiology.

[70]  R. Morris,et al.  Delay‐dependent impairment of a matching‐to‐place task with chronic and intrahippocampal infusion of the NMDA‐antagonist D‐AP5 , 1999, Hippocampus.

[71]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[72]  A. Treves,et al.  What is the mammalian dentate gyrus good for? , 2008, Neuroscience.

[73]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[74]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[75]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[76]  S. Heckers,et al.  Hippocampal activation during transitive inference in humans , 2004, Hippocampus.

[77]  H. Lipp,et al.  Marked species and age‐dependent differences in cell proliferation and neurogenesis in the hippocampus of wild‐living rodents , 2004, Hippocampus.

[78]  Bruce L McNaughton,et al.  Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. , 2010, Journal of neurophysiology.

[79]  F. Gage,et al.  Functional neurogenesis in the adult hippocampus , 2002, Nature.

[80]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[81]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[82]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[83]  P Alvarez,et al.  Memory consolidation and the medial temporal lobe: a simple network model. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[84]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[85]  T. Seki,et al.  Age‐related production of new granule cells in the adult dentate gyrus , 1995, Neuroreport.

[86]  Y. Dudai,et al.  Rapid Erasure of Long-Term Memory Associations in the Cortex by an Inhibitor of PKMζ , 2007, Science.

[87]  G. Buzsáki,et al.  Cell Assembly Sequences Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus , 2011, The Journal of Neuroscience.

[88]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[89]  J. Fell,et al.  Ripples in the medial temporal lobe are relevant for human memory consolidation. , 2008, Brain : a journal of neurology.

[90]  M. Witter,et al.  A Specific Role of the Human Hippocampus in Recall of Temporal Sequences , 2009, The Journal of Neuroscience.

[91]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[92]  S. Jager,et al.  Rapid Erasure of Long-Term Memory Associations in the Cortex by an Inhibitor of PKM z , 2009 .

[93]  Morris Moscovitch,et al.  Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus , 2011, Proceedings of the National Academy of Sciences.

[94]  P. Dayan,et al.  Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions , 2004, Nature Neuroscience.

[95]  J. O’Neill,et al.  Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration , 2007, The European journal of neuroscience.

[96]  S. Corkin,et al.  Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. , 2005, Neuropsychologia.

[97]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[98]  J. Disterhoft,et al.  Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat , 1999, Hippocampus.

[99]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[100]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[101]  Richard G. M. Morris,et al.  Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding , 2005, Neuropsychologia.

[102]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[103]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[104]  B. Derrick,et al.  Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. , 2002, Journal of neurophysiology.

[105]  K. Nakazawa,et al.  CA3 NMDA receptors are crucial for rapid and automatic representation of context memory , 2006, The European journal of neuroscience.

[106]  W. Levy A computational approach to hippocampal function , 1989 .

[107]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[108]  L. Nadel,et al.  The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory , 2009, Hippocampus.

[109]  W A Wickelgren,et al.  Chunking and consolidation: a theoretical synthesis of semantic networks, configuring in conditioning, S--R versus congenitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. , 1979, Psychological review.

[110]  Matthijs A. A. van der Meer,et al.  Hippocampal Replay Is Not a Simple Function of Experience , 2010, Neuron.

[111]  S. Tonegawa,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Adaptive Timing of Trace Eyeblink Conditioned Response , 2006, The Journal of Neuroscience.

[112]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[113]  James J. Knierim,et al.  Ensemble Dynamics of Hippocampal Regions CA3 and CA1 , 2004, Neuron.

[114]  L. Nadel,et al.  Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results , 2000, Hippocampus.

[115]  J. O’Neill,et al.  The reorganization and reactivation of hippocampal maps predict spatial memory performance , 2010, Nature Neuroscience.

[116]  R. Sutherland,et al.  Absence of systems consolidation of fear memories after dorsal, ventral, or complete hippocampal damage , 2008, Hippocampus.

[117]  R. Morris,et al.  Glutamate-receptor-mediated encoding and retrieval of paired-associate learning , 2003, Nature.

[118]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[119]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[120]  L. Frank,et al.  New Experiences Enhance Coordinated Neural Activity in the Hippocampus , 2008, Neuron.

[121]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[122]  T. Palmer,et al.  Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  J. Lisman,et al.  Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information , 2001, Hippocampus.

[124]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[125]  L. Nadel,et al.  Autobiographical Memory Retrieval and Hippocampal Activation as a Function of Repetition and the Passage of Time , 2007, Neural plasticity.

[126]  Neil Burgess,et al.  Impaired memory for scenes but not faces in developmental hippocampal amnesia: A case study , 2008, Neuropsychologia.

[127]  N. Cohen,et al.  Dissociations Among Processes in Remote Memory , 1985, Annals of the New York Academy of Sciences.

[128]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[129]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[130]  H. Eichenbaum,et al.  The hippocampus and memory for orderly stimulus relations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[131]  G. Dragoi,et al.  Preplay of future place cell sequences by hippocampal cellular assemblies , 2011, Nature.

[132]  H. Lipp,et al.  Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse , 2010, Neuroscience.

[133]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[134]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[135]  Laetitia Fellini,et al.  Pharmacological intervention of hippocampal CA3 NMDA receptors impairs acquisition and long-term memory retrieval of spatial pattern completion task. , 2009, Learning & memory.

[136]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[137]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[138]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[139]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[140]  D. Mumby,et al.  Retrograde amnesia following hippocampal lesions in the shock‐probe conditioning test , 2006, Hippocampus.

[141]  Janet Wiles,et al.  Computational Influence of Adult Neurogenesis on Memory Encoding , 2009, Neuron.

[142]  Y. Naya,et al.  Integrating What and When Across the Primate Medial Temporal Lobe , 2011, Science.

[143]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[144]  Demis Hassabis,et al.  Imagining fictitious and future experiences: Evidence from developmental amnesia , 2010, Neuropsychologia.

[145]  L. Frank,et al.  Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory , 2012, Science.

[146]  G. Winocur Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions , 1990, Behavioural Brain Research.

[147]  S. Tronel,et al.  Adult‐born neurons are necessary for extended contextual discrimination , 2012, Hippocampus.

[148]  M Mishkin,et al.  Amygdalectomy impairs crossmodal association in monkeys. , 1985, Science.

[149]  M. Hasselmo,et al.  Encoding and retrieval of episodic memories: Role of cholinergic and GABAergic modulation in the hippocampus , 1998, Hippocampus.

[150]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[151]  L. Squire,et al.  The primate hippocampal formation: evidence for a time-limited role in memory storage. , 1990, Science.

[152]  J. O’Neill,et al.  Reactivation of experience-dependent cell assembly patterns in the hippocampus , 2008, Nature Neuroscience.

[153]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[154]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[155]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[156]  S. Becker A computational principle for hippocampal learning and neurogenesis , 2005, Hippocampus.

[157]  J. Lassalle,et al.  Reversible Inactivation of the Hippocampal Mossy Fiber Synapses in Mice Impairs Spatial Learning, but neither Consolidation nor Memory Retrieval, in the Morris Navigation Task , 2000, Neurobiology of Learning and Memory.

[158]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[159]  M. Rugg,et al.  Prestimulus hippocampal activity predicts later recollection , 2009, Hippocampus.

[160]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[161]  B. Staresina,et al.  Mind the Gap: Binding Experiences across Space and Time in the Human Hippocampus , 2009, Neuron.

[162]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[163]  B. McNaughton,et al.  Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. , 2004, Journal of neurophysiology.

[164]  H. Eichenbaum,et al.  Conservation of hippocampal memory function in rats and humans , 1996, Nature.

[165]  D. Henze,et al.  Revisiting the role of the hippocampal mossy fiber synapse , 2001, Hippocampus.

[166]  T. Teyler,et al.  The hippocampal memory indexing theory. , 1986, Behavioral neuroscience.

[167]  Mattias P. Karlsson,et al.  Network Dynamics Underlying the Formation of Sparse, Informative Representations in the Hippocampus , 2008, The Journal of Neuroscience.

[168]  M. Moser,et al.  Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.