Adaptive Modular Architectures for Rich Motor Skills

[1]  Darwin G. Caldwell,et al.  A novel variable stiffness actuator: Minimizing the energy requirements for the stiffness regulation , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[2]  R. Blickhan,et al.  The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization--a review. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[3]  K.W. Hollander,et al.  Adjustable robotic tendon using a 'Jack Spring'/spl trade/ , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[4]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[5]  Alessandro De Luca,et al.  Evaluation of Collision Detection and Reaction for a Human-Friendly Robot on Biological Tissues , 2008 .

[6]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[7]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[8]  Jerry E. Pratt,et al.  The RoboKnee: an exoskeleton for enhancing strength and endurance during walking , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[10]  Thomas Sugar,et al.  Design and control of a three-degrees-of-freedom, in-parallel, actuated manipulator , 1994, J. Field Robotics.

[11]  Nikolaos G. Tsagarakis,et al.  The mechanical design of the new lower body for the child humanoid robot ‘iCub’ , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Bram Vanderborght,et al.  Design of a "Soft" 2-DOF Planar Pneumatic Manipulator , 2005, CLAWAR.

[13]  S Gracovetsky,et al.  An hypothesis for the role of the spine in human locomotion: a challenge to current thinking. , 1985, Journal of biomedical engineering.

[14]  Nikolaos G. Tsagarakis,et al.  Antagonistic and series elastic actuators: a comparative analysis on the energy consumption , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  P. Komi,et al.  Muscle-tendon interaction and elastic energy usage in human walking. , 2005, Journal of applied physiology.

[16]  Benjamin Schrauwen,et al.  Realization of a passive compliant robot dog , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[17]  Dirk Lefeber,et al.  The Concept and Design of Pleated Pneumatic Artificial Muscles , 2001 .

[18]  Nikolaos G. Tsagarakis,et al.  The design of the lower body of the compliant humanoid robot “cCub” , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Hartmut Witte,et al.  Legs evolved only at the end! , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Nikolaos G. Tsagarakis,et al.  Lower body realization of the baby humanoid - ‘iCub’ , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  S A Gracovetsky,et al.  Energy transfers in the spinal engine. , 1987, Journal of biomedical engineering.

[22]  R Putz,et al.  Comparative and functional anatomy of the mammalian lumbar spine , 2001, The Anatomical record.

[23]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[24]  J. S. Sulzer,et al.  MARIONET: An exotendon-driven rotary series elastic actuator for exerting joint torque , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[25]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.

[26]  Nikolaos G. Tsagarakis,et al.  Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Alin Albu-Schäffer,et al.  Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Kai-Nan An,et al.  Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. , 2004, Clinical biomechanics.

[29]  M. Fischer,et al.  Quadrupedal mammals as paragons for walking machines , 2000 .

[30]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[31]  Giorgio Grioli,et al.  VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Jerry Pratt,et al.  Series elastic actuators for high fidelity force control , 2002 .

[34]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[35]  Jan Wikander,et al.  Optimal selection of motor and gearhead in mechatronic applications , 2006 .

[36]  Marc H. Raibert,et al.  Running on four legs as though they were one , 1986, IEEE J. Robotics Autom..

[37]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Nikolaos G. Tsagarakis,et al.  iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research , 2007, Adv. Robotics.

[39]  Marcelo H. Ang,et al.  Active compliance control of a PUMA 560 robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[40]  Nikolaos G. Tsagarakis,et al.  AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio , 2011, 2011 IEEE International Conference on Robotics and Automation.

[41]  John Kenneth Salisbury,et al.  A New Actuation Approach for Human Friendly Robot Design , 2004, Int. J. Robotics Res..

[42]  Stephen P. DeWeerth,et al.  Biologically Inspired Joint Stiffness Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[43]  A.J. Ijspeert,et al.  Passive compliant quadruped robot using Central Pattern Generators for locomotion control , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[44]  Joel E. Chestnutt,et al.  The Actuator With Mechanically Adjustable Series Compliance , 2010, IEEE Transactions on Robotics.

[45]  Thomas B. Sheridan,et al.  The fundamental concepts of robust compliant motion for robot manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[46]  Alessandro De Luca,et al.  Collision detection and reaction: A contribution to safe physical Human-Robot Interaction , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[48]  Alin Albu-Schäffer,et al.  Soft robotics: what Cartesian stiffness can obtain with passively compliant, uncoupled joints? , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[49]  Gill Andrews Pratt Low Impedance Walking Robots1 , 2002, Integrative and comparative biology.

[50]  Shigeki Sugano,et al.  Design and development of a new robot joint using a mechanical impedance adjuster , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[51]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.