Reactive navigation in partially familiar planar environments using semantic perceptual feedback

This article solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in simultaneous localization and mapping (SLAM) and visual object recognition to recast prior geometric knowledge in terms of an offline catalog of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalog as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.

[1]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[2]  Gary H. Meisters,et al.  POLYGONS HAVE EARS , 1975 .

[3]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[5]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[6]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[7]  Yoram Koren,et al.  Real-time obstacle avoidance for fact mobile robots , 1989, IEEE Trans. Syst. Man Cybern..

[8]  R. W. Chaney Piecewise functions in nonsmooth analysis , 1990 .

[9]  D. Koditschek,et al.  The construction of analytic diffeomorphisms for exact robot navigation on star worlds , 1991 .

[10]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[11]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[12]  William S. Massey,et al.  Sufficient conditions for a local homeomorphism to be injective , 1992 .

[13]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[14]  Hazel Everett,et al.  Slicing an ear using prune-and-search , 1993, Pattern Recognit. Lett..

[15]  S. Scholtes,et al.  Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections , 1994 .

[16]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[17]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[18]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[19]  Peter F. Sturm,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[20]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[21]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[22]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[23]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[24]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Alessandro Astolfi,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 1999 .

[26]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[27]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[28]  Jerrold E. Marsden,et al.  Gyroscopic Forces and Collision Avoidance with Convex Obstacles , 2003 .

[29]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2004, Symposium on Solid and Physical Modeling.

[30]  Michael Farber,et al.  TOPOLOGY OF ROBOT MOTION PLANNING , 2006 .

[31]  Vadim Shapiro,et al.  Semi-analytic geometry with R-functions , 2007, Acta Numerica.

[32]  Kostas J. Kyriakopoulos,et al.  Towards locally computable polynomial navigation functions for convex obstacle workspaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[33]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[34]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[35]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[36]  Alfred A. Rizzi,et al.  Autonomous navigation for BigDog , 2010, 2010 IEEE International Conference on Robotics and Automation.

[37]  Christian Vollmer,et al.  Learning to navigate through crowded environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[38]  Aaron M. Johnson,et al.  Autonomous legged hill and stairwell ascent , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[39]  Howie Choset,et al.  Integrating planning and control for single-bodied wheeled mobile robots , 2011, Auton. Robots.

[40]  Boris Schling The Boost C++ Libraries , 2011 .

[41]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[42]  Emilio Frazzoli,et al.  Efficient Collision Checking in Sampling-Based Motion Planning , 2012, WAFR.

[43]  Emilio Frazzoli,et al.  High-speed flight in an ergodic forest , 2012, 2012 IEEE International Conference on Robotics and Automation.

[44]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[45]  Kostas J. Kyriakopoulos,et al.  Navigation Functions for everywhere partially sufficiently curved worlds , 2012, 2012 IEEE International Conference on Robotics and Automation.

[46]  Soon-Jo Chung,et al.  Motion primitives and 3D path planning for fast flight through a forest , 2015, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Yuliy Baryshnikov,et al.  How to run a centipede: a topological perspective , 2014 .

[48]  Dimitrios G. Kottas,et al.  Consistency Analysis and Improvement of Vision-aided Inertial Navigation , 2014, IEEE Transactions on Robotics.

[49]  Jitendra Malik,et al.  Category-specific object reconstruction from a single image , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Daniel E. Koditschek,et al.  A drift-diffusion model for robotic obstacle avoidance , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[51]  Vijay Kumar,et al.  Persistent Homology for Path Planning in Uncertain Environments , 2015, IEEE Transactions on Robotics.

[52]  Danica Kragic,et al.  Data-Driven Topological Motion Planning with Persistent Cohomology , 2015, Robotics: Science and Systems.

[53]  Andreas Krause,et al.  Robot navigation in dense human crowds: Statistical models and experimental studies of human–robot cooperation , 2015, Int. J. Robotics Res..

[54]  Emilio Frazzoli,et al.  RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning , 2016, Int. J. Robotics Res..

[55]  Jia Deng,et al.  Stacked Hourglass Networks for Human Pose Estimation , 2016, ECCV.

[56]  Daniel E. Koditschek,et al.  Exact robot navigation using power diagrams , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[57]  George J. Pappas,et al.  Localization from semantic observations via the matrix permanent , 2016, Int. J. Robotics Res..

[58]  Russ Tedrake,et al.  Funnel libraries for real-time robust feedback motion planning , 2016, Int. J. Robotics Res..

[59]  Amna Khan,et al.  Optimal Path Planning using RRT* based Approaches: A Survey and Future Directions , 2016 .

[60]  Daniel E. Koditschek,et al.  A hybrid systems model for simple manipulation and self-manipulation systems , 2015, Int. J. Robotics Res..

[61]  Chen Kong,et al.  Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Vasileios Vasilopoulos,et al.  Sensor-based legged robot homing using range-only target localization , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[63]  Daniel E. Koditschek,et al.  Sensory steering for sampling-based motion planning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[64]  Rahul Sukthankar,et al.  Cognitive Mapping and Planning for Visual Navigation , 2017, International Journal of Computer Vision.

[65]  Xiaowei Zhou,et al.  6-DoF object pose from semantic keypoints , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[66]  Leslie Pack Kaelbling,et al.  Sampling-based methods for factored task and motion planning , 2017, Robotics: Science and Systems.

[67]  Daniel E. Koditschek,et al.  Smooth extensions of feedback motion planners via reference governors , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[68]  Sean L. Bowman,et al.  Probabilistic data association for semantic SLAM , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[69]  Nicholas Roy,et al.  Sensor-Based Reactive Execution of Symbolic Rearrangement Plans by a Legged Mobile Manipulator , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[70]  Charalampos P. Bechlioulis,et al.  Robot Navigation in Complex Workspaces Using Harmonic Maps , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[71]  Leslie Pack Kaelbling,et al.  Sampling-based methods for factored task and motion planning , 2018, Int. J. Robotics Res..

[72]  Vijay R. Kumar,et al.  Autonomous Flight , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[73]  Vasileios Vasilopoulos,et al.  Technical Report: Reactive Navigation in Partially Known Non-Convex Environments , 2018, WAFR.

[74]  Vijay Kumar,et al.  Fast, autonomous flight in GPS‐denied and cluttered environments , 2017, J. Field Robotics.

[75]  Kaspar Althoefer,et al.  Reactive Magnetic-Field-Inspired Navigation for Non-Holonomic Mobile Robots in Unknown Environments , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[76]  Christian A. Mueller,et al.  Conceptualization of Object Compositions Using Persistent Homology , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[77]  Alejandro Ribeiro,et al.  Navigation Functions for Convex Potentials in a Space With Convex Obstacles , 2016, IEEE Transactions on Automatic Control.

[78]  Nicholas Roy,et al.  Admissible Abstractions for Near-optimal Task and Motion Planning , 2018, IJCAI.

[79]  Daniel E. Koditschek,et al.  Autonomous legged hill ascent , 2018, J. Field Robotics.

[80]  Jitendra Malik,et al.  Visual Memory for Robust Path Following , 2018, NeurIPS.

[81]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[82]  Fei Gao,et al.  Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments , 2018, J. Field Robotics.

[83]  Jitendra Malik,et al.  Combining Optimal Control and Learning for Visual Navigation in Novel Environments , 2019, CoRL.

[84]  Omur Arslan,et al.  Sensor-based reactive navigation in unknown convex sphere worlds , 2018, Int. J. Robotics Res..

[85]  Emmanuel Lemoine,et al.  Amazon Prime Air , 2019 .

[86]  Michael Farber,et al.  An upper bound for topological complexity , 2018, Topology and its Applications.

[87]  Noah J. Cowan,et al.  Recalibration of path integration in hippocampal place cells , 2018, bioRxiv.

[88]  Vasileios Vasilopoulos,et al.  Composition of Templates for Transitional Pedipulation Behaviors , 2019 .

[89]  George J. Pappas,et al.  Reactive Temporal Logic Planning for Multiple Robots in Unknown Environments , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[90]  Sean L. Bowman,et al.  Reactive Semantic Planning in Unexplored Semantic Environments Using Deep Perceptual Feedback , 2020, IEEE Robotics and Automation Letters.

[91]  George J. Pappas,et al.  Reactive Planning for Mobile Manipulation Tasks in Unexplored Semantic Environments , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).