A scalable motion planner for high-dimensional kinematic systems

Sampling-based algorithms are known for their ability to effectively compute paths for high-dimensional robots in relatively short times. The same algorithms, however, are also notorious for poor-quality solution paths, particularly as the dimensionality of the system grows. This work proposes a new probabilistically complete sampling-based algorithm, XXL, specially designed to plan the motions of high-dimensional mobile manipulators and related platforms. Using a novel sampling and connection strategy that guides a set of points mapped on the robot through the workspace, XXL scales to realistic manipulator platforms with dozens of joints by focusing the search of the robot’s configuration space to specific degrees of freedom that affect motion in particular portions of the workspace. Simulated planning scenarios with the Robonaut2 platform and planar kinematic chains confirm that XXL exhibits competitive solution times relative to many existing works while obtaining execution-quality solution paths. Solutions from XXL are of comparable quality to cost-aware methods even though XXL does not explicitly optimize over any particular criteria, and are computed in an order of magnitude less time. Furthermore, observations about the performance of sampling-based algorithms on high-dimensional manipulator planning problems are presented that reveal a cautionary tale regarding two popular guiding heuristics used in these algorithms, indicating that a nearly random search may outperform the state-of-the-art when defining such heuristics is known to be difficult.

[1]  Robert O. Ambrose,et al.  Robonaut 2 - The first humanoid robot in space , 2011, 2011 IEEE International Conference on Robotics and Automation.

[2]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[3]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[4]  Oliver Brock,et al.  Efficient Motion Planning Based on Disassembly , 2005, Robotics: Science and Systems.

[5]  Lydia E. Kavraki,et al.  Motion Planning in the Presence of Drift, Underactuation and Discrete System Changes , 2005, Robotics: Science and Systems.

[6]  Marc Toussaint,et al.  Robot trajectory optimization using approximate inference , 2009, ICML '09.

[7]  David Hsu,et al.  Workspace importance sampling for probabilistic roadmap planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Siddhartha S. Srinivasa,et al.  Legibility and predictability of robot motion , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[9]  Steven M. LaValle,et al.  Reducing metric sensitivity in randomized trajectory design , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[10]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[11]  R. O. Ambrose,et al.  Robonaut 2 — Initial activities on-board the ISS , 2012, 2012 IEEE Aerospace Conference.

[12]  Inna Sharf,et al.  Sampling-based A* algorithm for robot path-planning , 2014, Int. J. Robotics Res..

[13]  Kris K. Hauser,et al.  Fast interpolation and time-optimization with contact , 2014, Int. J. Robotics Res..

[14]  Lydia E. Kavraki,et al.  Resolution Independent Density Estimation for motion planning in high-dimensional spaces , 2013, 2013 IEEE International Conference on Robotics and Automation.

[15]  Didier Devaurs,et al.  Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces , 2014, WAFR.

[16]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[17]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[18]  Oliver Brock,et al.  Decomposition-based motion planning: a framework for real-time motion planning in high-dimensional configuration spaces , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  Léonard Jaillet,et al.  Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds , 2013, IEEE Transactions on Robotics.

[20]  Pavel Zezula,et al.  Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.

[21]  Kris K. Hauser,et al.  An empirical study of optimal motion planning , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Maxim Likhachev,et al.  Single- and dual-arm motion planning with heuristic search , 2014, Int. J. Robotics Res..

[23]  Lydia E. Kavraki,et al.  Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning , 2010, IEEE Transactions on Robotics.

[24]  S. A. Jacobs,et al.  Local randomization in neighbor selection improves PRM roadmap quality , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[26]  Didier Devaurs,et al.  Enhancing the transition-based RRT to deal with complex cost spaces , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Lydia E. Kavraki,et al.  Sampling-Based Methods for Motion Planning with Constraints , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[28]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[29]  Andreas Aristidou,et al.  FABRIK: A fast, iterative solver for the Inverse Kinematics problem , 2011, Graph. Model..

[30]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[31]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[32]  Nancy M. Amato,et al.  RESAMPL: A Region-Sensitive Adaptive Motion Planner , 2008, WAFR.

[33]  Lydia E. Kavraki,et al.  A Sampling-Based Tree Planner for Systems With Complex Dynamics , 2012, IEEE Transactions on Robotics.

[34]  David Hsu,et al.  Workspace-Based Connectivity Oracle: An Adaptive Sampling Strategy for PRM Planning , 2006, WAFR.

[35]  Lydia E. Kavraki,et al.  On the performance of random linear projections for sampling-based motion planning , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[37]  Alexandr Andoni,et al.  Beyond Locality-Sensitive Hashing , 2013, SODA.

[38]  Kazuhito Yokoi,et al.  Pivoting based manipulation by a humanoid robot , 2010, Auton. Robots.

[39]  Lydia E. Kavraki,et al.  A framework for using the workspace medial axis in PRM planners , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[40]  Julia Badger,et al.  Model-based robotic dynamic motion control for the Robonaut 2 humanoid robot , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[41]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[42]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[43]  Siddhartha S. Srinivasa,et al.  Randomized path planning for redundant manipulators without inverse kinematics , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[44]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[45]  Tamim Asfour,et al.  An integrated approach to inverse kinematics and path planning for redundant manipulators , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[46]  Russ Tedrake,et al.  Path planning in 1000+ dimensions using a task-space Voronoi bias , 2009, 2009 IEEE International Conference on Robotics and Automation.

[47]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[48]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[49]  Nancy M. Amato,et al.  Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems , 2010, Int. J. Robotics Res..

[50]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[51]  Dinesh Manocha,et al.  A Voronoi-based hybrid motion planner , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[52]  Erion Plaku,et al.  Region-Guided and Sampling-Based Tree Search for Motion Planning With Dynamics , 2015, IEEE Transactions on Robotics.

[53]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[54]  Maren Bennewitz,et al.  Whole-body motion planning for manipulation of articulated objects , 2013, 2013 IEEE International Conference on Robotics and Automation.

[55]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[56]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[57]  Siddhartha S. Srinivasa,et al.  BiSpace Planning: Concurrent Multi-Space Exploration , 2008, Robotics: Science and Systems.

[58]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[59]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[60]  Rachid Alami,et al.  Spatial reasoning for human robot interaction , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Jean-Claude Latombe,et al.  A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking , 2001, ISRR.

[62]  Lydia E. Kavraki,et al.  Measure theoretic analysis of probabilistic path planning , 2004, IEEE Transactions on Robotics and Automation.

[63]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[64]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[65]  Nancy M. Amato,et al.  UMAPRM: Uniformly sampling the medial axis , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[66]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[67]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[68]  Mark H. Overmars,et al.  Creating High-quality Paths for Motion Planning , 2007, Int. J. Robotics Res..

[69]  Lydia E. Kavraki,et al.  Anytime solution optimization for sampling-based motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[70]  Marin Kobilarov,et al.  Cross-Entropy Randomized Motion Planning , 2011, Robotics: Science and Systems.

[71]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[72]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[73]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[74]  Oliver Brock,et al.  Balancing Exploration and Exploitation in Sampling-Based Motion Planning , 2014, IEEE Transactions on Robotics.