Robotics-inspired methods to enhance protein design

The ability to design proteins with specific properties would yield great progress in pharmacology and bio-technologies. Methods to design proteins have been developed since a few decades and some relevant achievements have been made including de novo protein design. Yet, current approaches suffer some serious limitations. By not taking protein’s backbone motions into account, they fail at capturing some of the properties of the candidate design and cannot guarantee that the solution will in fact be stable for the goal conformation. Besides, although multi-states design methods have been proposed, they do not guarantee that a feasible trajectory between those states exists, which means that design problem involving state transitions are out of reach of the current methods. This thesis investigates how robotics-inspired algorithms can be used to efficiently explore the conformational landscape of a protein aiming to enhance protein design methods by introducing additional backbone flexibility. This work also provides first milestones towards protein motion design.

[1]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[3]  Didier Devaurs,et al.  Characterizing Energy Landscapes of Peptides Using a Combination of Stochastic Algorithms , 2015, IEEE Transactions on NanoBioscience.

[4]  A. Pohorille,et al.  The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data , 1997 .

[5]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[6]  Jerome Nilmeier,et al.  Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. , 2008, Journal of chemical theory and computation.

[7]  M. Maggioni,et al.  Determination of reaction coordinates via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[8]  Jean-Pierre Merlet,et al.  Optimal Design of Robots , 2005, Robotics: Science and Systems.

[9]  J. Onuchic,et al.  Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations , 2006, Proceedings of the National Academy of Sciences.

[10]  David T. Jones,et al.  De novo protein design using pairwise potentials and a genetic algorithm , 1994, Protein science : a publication of the Protein Society.

[11]  David Hsu,et al.  Randomized single-query motion planning in expansive spaces , 2000 .

[12]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[13]  Lydia E Kavraki,et al.  Roadmap methods for protein folding. , 2008, Methods in molecular biology.

[14]  Martin Zacharias,et al.  Protein–protein docking with a reduced protein model accounting for side‐chain flexibility , 2003, Protein science : a publication of the Protein Society.

[15]  Julia M. Shifman,et al.  Computational design of calmodulin mutants with up to 900-fold increase in binding specificity. , 2009, Journal of molecular biology.

[16]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[17]  Johan Desmet,et al.  The dead-end elimination theorem and its use in protein side-chain positioning , 1992, Nature.

[18]  Bruce Randall Donald,et al.  Dead-End Elimination with Backbone Flexibility , 2007, ISMB/ECCB.

[19]  Wouter Boomsma,et al.  Subtle Monte Carlo Updates in Dense Molecular Systems. , 2012, Journal of chemical theory and computation.

[20]  K. Hinsen Analysis of domain motions by approximate normal mode calculations , 1998, Proteins.

[21]  J. Skolnick,et al.  Monte carlo simulations of protein folding. I. Lattice model and interaction scheme , 1994, Proteins.

[22]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[23]  Jasmine L. Gallaher,et al.  Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction , 2010, Science.

[24]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[25]  Jasmine L. Gallaher,et al.  Alteration of enzyme specificity by computational loop remodeling and design , 2009, Proceedings of the National Academy of Sciences.

[26]  R. Goldstein Efficient rotamer elimination applied to protein side-chains and related spin glasses. , 1994, Biophysical journal.

[27]  Gregory R Bowman,et al.  FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs. , 2015, Journal of chemical theory and computation.

[28]  David A C Beck,et al.  Exploring the energy landscape of protein folding using replica-exchange and conventional molecular dynamics simulations. , 2007, Journal of structural biology.

[29]  Juan Cortés,et al.  A Robotics Approach to Enhance Conformational Sampling of Proteins , 2012 .

[30]  Bruce Randall Donald,et al.  A Novel Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles , 2006, RECOMB.

[31]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[32]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[33]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[34]  Manuel Laso,et al.  A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases , 1994 .

[35]  Christopher A. Voigt,et al.  Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. , 2000, Journal of molecular biology.

[36]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[37]  B. Bagchi,et al.  Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. , 2004, The Journal of chemical physics.

[38]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[39]  Stephen L. Mayo,et al.  Dramatic performance enhancements for the FASTER optimization algorithm , 2006, J. Comput. Chem..

[40]  Alfonso Jaramillo,et al.  Challenges in the computational design of proteins , 2009, Journal of The Royal Society Interface.

[41]  I. Bahar,et al.  Normal mode analysis : theory and applications to biological and chemical systems , 2005 .

[42]  Ron Unger,et al.  Finding the lowest free energy conformation of a protein is an NP-hard problem: Proof and implications , 1993 .

[43]  Oliver Brock,et al.  Guiding conformation space search with an all‐atom energy potential , 2008, Proteins.

[44]  A. Bondi van der Waals Volumes and Radii , 1964 .

[45]  P. Wright,et al.  Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. , 1992, Biochemistry.

[46]  Claudio Soto,et al.  Protein misfolding and neurodegeneration. , 2008, Archives of neurology.

[47]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[48]  Adam Liwo,et al.  A united residue force‐field for calcium–protein interactions , 2004, Protein science : a publication of the Protein Society.

[49]  T. Siméon,et al.  An NMA‐guided path planning approach for computing large‐amplitude conformational changes in proteins , 2007, Proteins.

[50]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[51]  Steven M. LaValle,et al.  Incrementally reducing dispersion by increasing Voronoi bias in RRTs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[52]  Y. Sanejouand,et al.  Conformational change of proteins arising from normal mode calculations. , 2001, Protein engineering.

[53]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[54]  Nancy M. Amato,et al.  An obstacle-based rapidly-exploring random tree , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[55]  Didier Devaurs,et al.  A Multi-Tree Approach to Compute Transition Paths on Energy Landscapes , 2013, AAAI 2013.

[56]  M. Deem,et al.  Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides , 1999, physics/9904057.

[57]  Marc Baaden,et al.  The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. , 2014, Chemical Society reviews.

[58]  Jean-Claude Latombe,et al.  A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking , 2001, ISRR.

[59]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[60]  Bruce Randall Donald,et al.  Protein Design Using Continuous Rotamers , 2012, PLoS Comput. Biol..

[61]  Anirban Kundu,et al.  Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening , 2002, Protein science : a publication of the Protein Society.

[62]  N. Go,et al.  Studies on protein folding, unfolding and fluctuations by computer simulation. III. Effect of short-range interactions. , 2009, International journal of peptide and protein research.

[63]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[64]  Kentaro Shimizu,et al.  Folding free‐energy landscape of a 10‐residue mini‐protein, chignolin , 2006, FEBS letters.

[65]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[66]  Gert Vriend,et al.  A series of PDB related databases for everyday needs , 2010, Nucleic Acids Res..

[67]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[68]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[69]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[70]  Jean-Claude Latombe,et al.  A Motion Planning Approach to Flexible Ligand Binding , 1999, ISMB.

[71]  Scott Brown,et al.  Coarse-grained sequences for protein folding and design , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[73]  C B Anfinsen,et al.  The formation and stabilization of protein structure. , 1972, The Biochemical journal.

[74]  S J Wodak,et al.  Automatic protein design with all atom force-fields by exact and heuristic optimization. , 2000, Journal of molecular biology.

[75]  Didier Devaurs,et al.  Optimal Path Planning in Complex Cost Spaces With Sampling-Based Algorithms , 2016, IEEE Transactions on Automation Science and Engineering.

[76]  Bruce Randall Donald,et al.  Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design , 2006, ISMB.

[77]  William L. Jorgensen,et al.  Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias , 2003 .

[78]  P S Kim,et al.  Repacking protein cores with backbone freedom: structure prediction for coiled coils. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[79]  V. Pande,et al.  Simulated tempering yields insight into the low‐resolution Rosetta scoring functions , 2009, Proteins.

[80]  Amedeo Caflisch,et al.  Docking small ligands in flexible binding sites , 1998, J. Comput. Chem..

[81]  Stephen L. Mayo,et al.  Conformational splitting: A more powerful criterion for dead-end elimination , 2000, J. Comput. Chem..

[82]  Tanja Kortemme,et al.  Backbone flexibility in computational protein design. , 2009, Current opinion in biotechnology.

[83]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[84]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[85]  Thierry Siméon,et al.  Geometric algorithms for the conformational analysis of long protein loops , 2004, J. Comput. Chem..

[86]  Lydia Tapia,et al.  Rigidity analysis for protein motion and folding core identification , 2013, AAAI 2013.

[87]  Simon de Givry,et al.  Computational protein design as an optimization problem , 2014, Artif. Intell..

[88]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[89]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[90]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[91]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[92]  Leo Joskowicz,et al.  Kinematic synthesis , 2001 .

[93]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[94]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[95]  Thierry Siméon,et al.  Transition-based RRT for path planning in continuous cost spaces , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[96]  Lars Malmström,et al.  Structure prediction for CASP7 targets using extensive all‐atom refinement with Rosetta@home , 2007, Proteins.

[97]  Woody Sherman,et al.  Affinity enhancement of an in vivo matured therapeutic antibody using structure‐based computational design , 2006, Protein science : a publication of the Protein Society.

[98]  Harold A. Scheraga,et al.  Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons , 1966 .

[99]  Jean-Claude Latombe,et al.  Multi-modal Motion Planning in Non-expansive Spaces , 2010, Int. J. Robotics Res..

[100]  Bryan S. Der,et al.  Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. , 2012, Journal of the American Chemical Society.

[101]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[102]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[103]  Timothy A. Whitehead,et al.  Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin , 2011, Science.

[104]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[105]  María Suárez,et al.  Pareto optimization in computational protein design with multiple objectives , 2008, J. Comput. Chem..

[106]  Andrés Colubri,et al.  Prediction of Protein Structure by Simulating Coarse-grained Folding Pathways: A Preliminary Report , 2004, Journal of biomolecular structure & dynamics.

[107]  David J Wales,et al.  Finding pathways between distant local minima. , 2005, The Journal of chemical physics.

[108]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[109]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[110]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[111]  Cecilia Clementi,et al.  Coarse-grained models of protein folding: toy models or predictive tools? , 2008, Current opinion in structural biology.

[112]  M. Renaud,et al.  A SIMPLIFIED INVERSE KINEMATIC MODEL CALCULATION METHOD FOR ALL 6R TYPE MANIPULATORS , 2000 .

[113]  Lydia E. Kavraki,et al.  A Sampling-Based Tree Planner for Systems With Complex Dynamics , 2012, IEEE Transactions on Robotics.

[114]  P. Nguyen,et al.  Energy landscape of a small peptide revealed by dihedral angle principal component analysis , 2004, Proteins.

[115]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[116]  Juan Cortés,et al.  Randomized tree construction algorithm to explore energy landscapes , 2011, J. Comput. Chem..

[117]  M. Betancourt,et al.  Efficient Monte Carlo trial moves for polypeptide simulations. , 2005, The Journal of chemical physics.

[118]  Brian Kuhlman,et al.  High-resolution design of a protein loop , 2007, Proceedings of the National Academy of Sciences.

[119]  I. Lasters,et al.  Fast and accurate side‐chain topology and energy refinement (FASTER) as a new method for protein structure optimization , 2002, Proteins.

[120]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  W. DeGrado,et al.  Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils. , 1996, Biochemistry.

[122]  Pascal Van Hentenryck,et al.  On Lattice Protein Structure Prediction Revisited , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[123]  Thierry Siméon,et al.  Segmenting Proteins into Tripeptides to Enhance Conformational Sampling with Monte Carlo Methods , 2018, Molecules.

[124]  Simon de Givry,et al.  A new framework for computational protein design through cost function network optimization , 2013, Bioinform..

[125]  Steven M. LaValle,et al.  Resolution complete rapidly-exploring random trees , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[126]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[127]  David Curcó,et al.  Relaxation of amorphous multichain polymer systems using inverse kinematics , 2010 .

[128]  Christodoulos A. Floudas,et al.  Novel formulations for the sequence selection problem in de novo protein design with flexible templates , 2007, Optim. Methods Softw..

[129]  P E Wright,et al.  Dynamics of a flexible loop in dihydrofolate reductase from Escherichia coli and its implication for catalysis. , 1994, Biochemistry.

[130]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[131]  John F. Canny,et al.  Geometric Problems in Molecular Biology and Robotics , 1994, ISMB.

[132]  T. Simonson,et al.  Computational protein design with a generalized born solvent model: Application to asparaginyl‐tRNA synthetase , 2011, Proteins.

[133]  S. L. Mayo,et al.  Protein design automation , 1996, Protein science : a publication of the Protein Society.

[134]  J. C. Schön,et al.  Prediction, determination and validation of phase diagrams via the global study of energy landscapes , 2009 .

[135]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[136]  Thierry Siméon,et al.  Manipulation Planning with Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[137]  D. Baker,et al.  Improved recognition of native‐like protein structures using a combination of sequence‐dependent and sequence‐independent features of proteins , 1999, Proteins.

[138]  K. Schulten,et al.  Calculating potentials of mean force from steered molecular dynamics simulations. , 2004, The Journal of chemical physics.

[139]  Lydia E Kavraki,et al.  Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction , 2006, Proc. Natl. Acad. Sci. USA.

[140]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[141]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[142]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[143]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[144]  Guang Song,et al.  Protein folding by motion planning , 2005, Physical biology.

[145]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[146]  J R Desjarlais,et al.  De novo design of the hydrophobic cores of proteins , 1995, Protein science : a publication of the Protein Society.

[147]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[148]  W. L. Jorgensen,et al.  Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. , 2004, Journal of the American Chemical Society.

[149]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[150]  R. Hegger,et al.  Dihedral angle principal component analysis of molecular dynamics simulations. , 2007, The Journal of chemical physics.

[151]  D. Baker,et al.  Design of a Novel Globular Protein Fold with Atomic-Level Accuracy , 2003, Science.

[152]  Mai Mai,et al.  Steered Molecular Dynamics-A Promising Tool for Drug Design , 2012 .

[153]  Thierry Siméon,et al.  Combining System Design and Path Planning , 2016, WAFR.

[154]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[155]  Lydia Tapia,et al.  Simulating Protein Motions with Rigidity Analysis , 2006, RECOMB.

[156]  Roy L. Johnston,et al.  Energy Landscape and Global Optimization for a Frustrated Model Protein , 2011, The journal of physical chemistry. B.

[157]  A. Jaramillo,et al.  Using multi-objective computational design to extend protein promiscuity. , 2010, Biophysical chemistry.

[158]  Manuela M. Veloso,et al.  Real-time randomized path planning for robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[159]  Niles A Pierce,et al.  Protein design is NP-hard. , 2002, Protein engineering.

[160]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[161]  Martin S. Taylor,et al.  Toward full-sequence de novo protein design with flexible templates for human beta-defensin-2. , 2008, Biophysical journal.

[162]  M. Levitt,et al.  Exploring conformational space with a simple lattice model for protein structure. , 1994, Journal of molecular biology.

[163]  Chun Wu,et al.  Convergence of replica exchange molecular dynamics. , 2005, The Journal of chemical physics.

[164]  Bruce Tidor,et al.  Progress in computational protein design. , 2007, Current opinion in biotechnology.

[165]  Pau Bernadó,et al.  A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[166]  A R Leach,et al.  Exploring the conformational space of protein side chains using dead‐end elimination and the A* algorithm , 1998, Proteins.

[167]  Thierry Siméon,et al.  Motion planning algorithms for molecular simulations: A survey , 2012, Comput. Sci. Rev..

[168]  Nancy M. Amato,et al.  Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures , 2002, RECOMB '02.

[169]  Amarda Shehu,et al.  A Probabilistic Roadmap-based Method to Model Conformational Switching of a Protein Among Many Functionally-relevant Structures , 2014 .

[170]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[171]  Thierry Siméon,et al.  Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. , 2010, Physical chemistry chemical physics : PCCP.

[172]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[173]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[174]  A. Mark,et al.  Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. , 2007, The Journal of chemical physics.

[175]  Michael W. Deem,et al.  Efficient Monte Carlo methods for cyclic peptides , 1999 .

[176]  Thomas Simonson,et al.  Pairwise decomposition of an MMGBSA energy function for computational protein design , 2014, J. Comput. Chem..

[177]  Didier Devaurs,et al.  MoMA-LigPath: a web server to simulate protein–ligand unbinding , 2013, Nucleic Acids Res..

[178]  Youngshang Pak,et al.  Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems , 2000 .

[179]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[180]  Jeffrey W. Herrmann,et al.  Multi-Objective Design and Path Planning Optimization of Unmanned Aerial Vehicles (UAVs) , 2015 .

[181]  Ryuhei Harada,et al.  Exploring the folding free energy landscape of a β-hairpin miniprotein, chignolin, using multiscale free energy landscape calculation method. , 2011, The journal of physical chemistry. B.

[182]  E I Shakhnovich,et al.  A test of lattice protein folding algorithms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[183]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[184]  Michele Vendruscolo,et al.  Structure of an Intermediate State in Protein Folding and Aggregation , 2012, Science.

[185]  Jerome Nilmeier,et al.  Monte Carlo Sampling with Hierarchical Move Sets: POSH Monte Carlo. , 2009, Journal of chemical theory and computation.

[186]  P. Nguyen,et al.  Structure and energy landscape of a photoswitchable peptide: A replica exchange molecular dynamics study , 2005, Proteins.

[187]  G. Swaminathan Robot Motion Planning , 2006 .

[188]  Yuko Okamoto,et al.  Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. , 2003, Journal of molecular graphics & modelling.

[189]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[190]  Thierry Siméon,et al.  Disassembly Path Planning for Complex Articulated Objects , 2007, IEEE Transactions on Robotics.

[191]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[192]  S. L. Mayo,et al.  De novo protein design: fully automated sequence selection. , 1997, Science.

[193]  R. Jernigan,et al.  Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. , 1997, Journal of molecular biology.

[194]  Claudio N. Cavasotto,et al.  The Challenge of Considering Receptor Flexibility in Ligand Docking and Virtual Screening , 2005 .

[195]  C. Dobson,et al.  Structure of a low-population intermediate state in the release of an enzyme product , 2015, eLife.

[196]  J. Skolnick,et al.  Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding , 2002, Proteins.

[197]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[198]  B. Matthews,et al.  Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. , 1993, Journal of molecular biology.

[199]  Simon de Givry,et al.  Computational Protein Design as a Cost Function Network Optimization Problem , 2012, CP.

[200]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[201]  Didier Devaurs,et al.  A multi-tree extension of the transition-based RRT: Application to ordering-and-pathfinding problems in continuous cost spaces , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[202]  Clément Gosselin,et al.  A Global Performance Index for the Kinematic Optimization of Robotic Manipulators , 1991 .