Global estimation in constrained environments

This article considers the optimal estimation of the state of a dynamic observable using a mobile sensor. The main goal is to compute a sensor trajectory that minimizes the estimation error over a given time horizon taking into account uncertainties in the observable dynamics and sensing, and respecting the constraints of the workspace. The main contribution is a methodology for handling arbitrary dynamics, noise models, and environment constraints in a global optimization framework. It is based on sequential Monte Carlo methods and sampling-based motion planning. Three variance reduction techniques–utility sampling, shuffling, and pruning–based on importance sampling, are proposed to speed up convergence. The developed framework is applied to two typical scenarios: a simple vehicle operating in a planar polygonal obstacle environment and a simulated helicopter searching for a moving target in a 3-D terrain.

[1]  J.-P. Le Cadre,et al.  Planning for terrain-aided navigation , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[2]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[3]  Jonathan P. How,et al.  Experimental Demonstration of Adaptive MDP-Based Planning with Model Uncertainty , 2008 .

[4]  Andreas Krause,et al.  Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach , 2007, ICML '07.

[5]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[6]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo Method (Wiley Series in Probability and Statistics) , 1981 .

[7]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[8]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[9]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[10]  J. Cadre,et al.  Optimal observer trajectory in bearings-only tracking for manoeuvring sources , 1999 .

[11]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[12]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[13]  Marin Kobilarov Discrete geometric motion control of autonomous vehicles , 2008 .

[14]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[15]  Oussama Khatib,et al.  Experimental Robotics IV, The 4th International Symposium, Stanford, California, USA, June 30 - July 2, 1995 , 1997, ISER.

[16]  Hugh F. Durrant-Whyte,et al.  Dynamic space reconfiguration for Bayesian search and tracking with moving targets , 2008, Auton. Robots.

[17]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[18]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[19]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.

[20]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[21]  Christopher Geyer Active target search from UAVs in urban environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[23]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[24]  Salah Sukkarieh,et al.  The Demonstration of a Cooperative Control Architecture for UAV Teams , 2006, ISER.

[25]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[26]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[28]  Allison Ryan Information-Theoretic Tracking Control Based on Particle Filter Estimate , 2008 .

[29]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[30]  Roger D. Quinn,et al.  Evolutionary path planning for autonomous air vehicles using multi-resolution path representation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[31]  Frédéric Dambreville,et al.  Optimal path planning using Cross-Entropy method , 2006, 2006 9th International Conference on Information Fusion.

[32]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[33]  Geoffrey A. Hollinger,et al.  Efficient, guaranteed search with multi-agent teams , 2009, Robotics: Science and Systems.

[34]  Joris De Schutter,et al.  A Comparison of Decision Making Criteria and Optimization Methods for Active Robotic Sensing , 2002, Numerical Methods and Application.

[35]  J. Karl Hedrick,et al.  Autonomous UAV path planning and estimation , 2009, IEEE Robotics & Automation Magazine.

[36]  Joris De Schutter,et al.  A multisine approach for trajectory optimization based on information gain , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[38]  Claire J. Tomlin,et al.  Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters , 2010, IEEE Transactions on Automatic Control.

[39]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .

[40]  Stefano Carpin,et al.  A genetic algorithm for nonholonomic motion planning , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[41]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[42]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[43]  Robin J. Evans,et al.  Simulation-Based Optimal Sensor Scheduling with Application to Observer Trajectory Planning , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[44]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[45]  Lydia E. Kavraki,et al.  Measure theoretic analysis of probabilistic path planning , 2004, IEEE Transactions on Robotics and Automation.

[46]  Arthur C. Sanderson,et al.  Planning multiple paths with evolutionary speciation , 2001, IEEE Trans. Evol. Comput..

[47]  Hendrik Van Brussel,et al.  Tolerance-weighted L-optimal experiment design for active sensing , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[48]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[49]  Warren B. Powell,et al.  Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics) , 2007 .

[50]  Marin Kobilarov,et al.  Cross-Entropy Randomized Motion Planning , 2011, Robotics: Science and Systems.

[51]  Joel W. Burdick,et al.  A Decision-Making Framework for Control Strategies in Probabilistic Search , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[52]  Alexei Makarenko,et al.  Information-theoretic coordinated control of multiple sensor platforms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[53]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[54]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[55]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[56]  Salah Sukkarieh,et al.  Architectures for Cooperative Airborne Simultaneous Localisation and Mapping , 2009, J. Intell. Robotic Syst..

[57]  G. Swaminathan Robot Motion Planning , 2006 .