Path Planning in Dynamic Environments

The motion planning problem for mobile robots is typically formulated as follows: given a robot and a description of an environment, plan a path of the robot between two specified locations, which is collision-free and satisfies certain optimization criteria. Traditionally there are two approaches to the problem: Off-line planning, which assumes perfectly known and stable environment, and on-line planning, which focuses on dealing with uncertainties when the robot traverses the environment. On-line planning is also referred to by many researchers as the navigation problem. Additional difficulties in approaching navigation problem is that some environments are dynamic, i.e., the obstacles which are present there, need not be static. In this paper we consider a particular instance of a navigation problem, namely, a problem of computing a near-optimum trajectory of a ship. By taking into account certain boundaries of the maneuvering region, along with navigation obstacles and other moving ships, the problem of avoiding collisions at sea was reduced to a dynamic optimization task with static and dynamic constrains. The paper presents a modified version of the Evolutionary Planner/Navigator algorithm, θEP/N++, to address the problem. The introduction of a time parameter, the variable speed of the ship, and time-varying constraints representing movable ships, are the main features of the new system. Sample results, having the form of ship trajectories obtained using the program for navigation situations

[1]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[2]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[4]  Yunhui Liu,et al.  Finding the shortest path of a disc among polygonal obstacles using a radius-independent graph , 1995, IEEE Trans. Robotics Autom..

[5]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[6]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[7]  Maja J. Mataric,et al.  Motion planning using dynamic roadmaps , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[9]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[10]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  Thierry Siméon,et al.  Adaptive tuning of the sampling domain for dynamic-domain RRTs , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Stephen G. Kobourov,et al.  Drawing with Fat Edges , 2006, Int. J. Found. Comput. Sci..

[15]  Mark H. Overmars,et al.  Sampling and node adding in probabilistic roadmap planners , 2006, Robotics Auton. Syst..

[16]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[17]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[18]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[19]  J. Schwartz,et al.  On the Piano Movers' Problem: III. Coordinating the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal Barriers , 1983 .

[20]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[21]  Hoi-Shan Lin,et al.  Evolutionary algorithm for path planning in mobile robot environment , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  Pekka Isto,et al.  Constructing probabilistic roadmaps with powerful local planning and path optimization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[24]  G. Swaminathan Robot Motion Planning , 2006 .

[25]  Mark H. Overmars,et al.  Useful cycles in probabilistic roadmap graphs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[26]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Wolfram Burgard,et al.  An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Lydia E. Kavraki,et al.  A framework for using the workspace medial axis in PRM planners , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[29]  Prof. Dr. Kikuo Fujimura Motion Planning in Dynamic Environments , 1991, Computer Science Workbench.

[30]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[31]  Jur P. van den Berg,et al.  Anytime path planning and replanning in dynamic environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[33]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[34]  Mark Overmars,et al.  Computing Shortest Paths amidst Growing Discs in the Plane , 2006 .

[35]  Jur P. van den Berg,et al.  Planning Near-Optimal Corridors Amidst Obstacles , 2006, WAFR.

[36]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[37]  Menelaos I. Karavelas Segment Voronoi diagrams in CGAL , 2004 .

[38]  Christopher M. Clark,et al.  Applying kinodynamic randomized motion planning with a dynamic priority system to multi-robot space systems , 2002, Proceedings, IEEE Aerospace Conference.

[39]  Roland S. Burns An Intelligent Integrated Ship Guidance System , 1992 .

[40]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[41]  Mark H. Overmars,et al.  The corridor map method: a general framework for real‐time high‐quality path planning , 2007, Comput. Animat. Virtual Worlds.

[42]  Ken Goldberg,et al.  Completeness in robot motion planning , 1995 .

[43]  Zack J. Butler Corridor planning for natural agents , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[44]  Dan Halperin,et al.  Advanced programming techniques applied to Cgal's arrangement package , 2007, Comput. Geom..

[45]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[46]  J. V. D. Berg,et al.  Path Planning in Repetitive Environments , 2006 .

[47]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[48]  J. Miller Numerical Analysis , 1966, Nature.

[49]  Micha Sharir,et al.  On Translational Motion Planning of a Convex Polyhedron in 3-Space , 1997, SIAM J. Comput..

[50]  Steven M. LaValle,et al.  Quasi-randomized path planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[51]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[52]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[53]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[54]  J. Davenport A "Piano Movers" Problem. , 1986 .

[55]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[56]  Dan Halperin,et al.  Code Flexibility and Program Efficiency by Genericity: Improving Cgal's Arrangements , 2004, ESA.

[57]  Jing Xiao,et al.  Real-time adaptive and trajectory-optimized manipulator motion planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[58]  Mark H. Overmars,et al.  Reachability Analysis of Sampling Based Planners , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[59]  Gino van den Bergen Collision Detection in Interactive 3D Environments , 2003 .

[60]  Ee-Chien Chang,et al.  Shortest path amidst disc obstacles is computable , 2005, Int. J. Comput. Geom. Appl..

[61]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[62]  Kikuo Fujimura,et al.  Time-minimum routes in time-dependent networks , 1995, IEEE Trans. Robotics Autom..

[63]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[64]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[65]  Hanan Samet,et al.  Planning a time-minimal motion among moving obstacles , 1993, Algorithmica.

[66]  Srinivas Akella,et al.  Time-scaled coordination of multiple manipulators , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[67]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  P. Svestka On probabilistic completeness and expected complexity for probabilistic path planning , 1996 .

[69]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[70]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[71]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[72]  Srinivas Akella,et al.  Coordinating the motions of multiple robots with kinodynamic constraints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[73]  Ron Wein,et al.  High-Level Filtering for Arrangements of Conic Arcs , 2002, ESA.

[74]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[75]  Mark H. Overmars Path Planning For Games , 2005 .

[76]  Mitul Saha,et al.  Exact Collision Checking of Robot Paths , 2002, WAFR.

[77]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[78]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[79]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[80]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[81]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[82]  Frank Lingelbach,et al.  Path planning using probabilistic cell decomposition , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[83]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[84]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[85]  Mark H. Overmars,et al.  Motion planning for camera movements , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[86]  Mark H. Overmars,et al.  Motion planning for coherent groups of entities , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[87]  J. Reif,et al.  Shortest Paths in Euclidean Space with Polyhedral Obstacles. , 1985 .

[88]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[89]  Kostas E. Bekris,et al.  Sampling-based roadmap of trees for parallel motion planning , 2005, IEEE Transactions on Robotics.

[90]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[91]  Martha Grabowski,et al.  Evolution of Intelligent Shipboard Piloting Systems: A Distributed System for the St Lawrence Seaway , 1996 .

[92]  Leonidas J. Guibas,et al.  Vertical decompositions for triangles in 3-space , 1994, SCG '94.

[93]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[94]  Jirí Matousek,et al.  Piecewise linear paths among convex obstacles , 1993, STOC.

[95]  Mark H. Overmars,et al.  Creating robust roadmaps for motion planning in changing environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[96]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[97]  Mark H. Overmars,et al.  AUTOMATIC CONSTRUCTION OF ROADMAPS FOR PATH PLANNING IN GAMES , 2004 .

[98]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[99]  Stefan Schirra Moving a disc between polygons , 1993, SCG '93.

[100]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[101]  Christian Laugier,et al.  High-speed autonomous navigation with motion prediction for unknown moving obstacles , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[102]  Mark H. Overmars,et al.  Roadmap-based motion planning in dynamic environments , 2004, IEEE Transactions on Robotics.

[103]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[104]  Bernhard Glavina,et al.  Solving findpath by combination of goal-directed and randomized search , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[105]  Seth Hutchinson,et al.  A Framework for Real-time Path Planning in Changing Environments , 2002, Int. J. Robotics Res..

[106]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[107]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[108]  Hiroshi Murase,et al.  A STRANDING AVOIDANCE SYSTEM USING RADAR IMAGE MATCHING: DEVELOPMENT AND EXPERIMENT , 1991 .

[109]  Lydia E. Kavraki,et al.  A two level fuzzy PRM for manipulation planning , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[110]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[111]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[112]  R. S. Burns,et al.  An Automatic Collision Avoidance and Guidance System for Marine Vehicles in Confined Waters , 1986 .

[113]  Thierry Fraichard,et al.  Motion prediction for moving objects: a statistical approach , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[114]  Wolfram Burgard,et al.  Learning motion patterns of persons for mobile service robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[115]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[116]  Wolfram Burgard,et al.  Finding and Optimizing Solvable Priority Schemes for Decoupled Path Planning Techniques for Teams of Mobile Robots , 2002, PuK.

[117]  Roman Smierzchalski,et al.  Trajectory Planning for Ship in Collision Situations at Sea by Evolutionary Computation , 1997 .

[118]  Dan Halperin,et al.  Hybrid Motion Planning: Coordinating Two Discs Moving among Polygonal Obstacles in the Plane , 2002, WAFR.

[119]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[120]  Paolo Fiorini,et al.  Time optimal trajectory planning in dynamic environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[121]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[122]  Mark H. Overmars,et al.  A random approach to motion planning , 1992 .

[123]  Thierry Siméon,et al.  A PRM-based motion planner for dynamically changing environments , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[124]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[125]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[126]  Mark H. Overmars,et al.  Creating High-quality Roadmaps for Motion Planning in Virtual Environments , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[127]  Micha Sharir,et al.  A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment , 1996, Discret. Comput. Geom..

[128]  Jason M. O'Kane,et al.  Computing Pareto Optimal Coordinations on Roadmaps , 2005, Int. J. Robotics Res..

[129]  Micha Sharir,et al.  Retraction: A new approach to motion-planning , 1983, STOC.

[130]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[131]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[132]  Dinesh Manocha,et al.  Collision and Proximity Queries , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[133]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[134]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[135]  Mark H. Overmars,et al.  Clearance based path optimization for motion planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[136]  Yu-Chi Chang,et al.  Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[137]  Pankaj K. Agarwal,et al.  Polygon decomposition for efficient construction of Minkowski sums , 2000, Comput. Geom..

[138]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[139]  Mark H. Overmars,et al.  Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles , 2006, WAFR.

[140]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[141]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[142]  Jean-Claude Latombe,et al.  A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking , 2001, ISRR.

[143]  David Hsu,et al.  Workspace importance sampling for probabilistic roadmap planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[144]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[145]  Jason M. O'Kane,et al.  Exact Pareto-optimal coordination of two translating polygonal robots on an acyclic roadmap , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[146]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[147]  Mark H. Overmars,et al.  Path Finding for the Animation of Walking Characters , 2005 .

[148]  Howie Choset,et al.  Complete sensor-based coverage with extended-range detectors: a hierarchical decomposition in terms of critical points and Voronoi diagrams , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[149]  Zbigniew Michalewicz,et al.  Adaptive modeling of a ship trajectory in collision situations at sea , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[150]  Jean-Claude Latombe,et al.  Using a PRM planner to compare centralized and decoupled planning for multi-robot systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[151]  Boris Baginski,et al.  The Z^3-Method for Fast Path Planning in Dynamic Environments , 1996 .

[152]  John F. Canny,et al.  Computing Roadmaps of General Semi-Algebraic Sets , 1991, Comput. J..