Aligning parts for micro assemblies

Orienting parts that measure only a few micrometers in diameter introduces several challenges that need not be considered at the macro‐scale. First, there are several kinds of sticking effects due to Van der Waals forces and static electricity, which complicate hand‐off motions and release of a part. Second, the degrees of freedom of micro‐manipulators are limited. This paper proposes a pair of manipulation primitives and a complete algorithm that addresses these challenges. We will show that a sequence of these two manipulation primitives can uniquely orient any asymmetric part while maintaining contact without sensing. This allows us to apply the same plan to many (identical) parts simultaneously. For asymmetric parts we can find a plan of length O(n) in O(n) time that orients the part, where n is the number of vertices.

[1]  Michael A. Peshkin,et al.  A complete algorithm for designing passive fences to orient parts , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[2]  Balas K. Natarajan,et al.  Some Paradigms for the Automated Design of Parts Feeders , 1989, Int. J. Robotics Res..

[3]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[4]  Antonio Bicchi,et al.  Planning Motions of Polyhedral Parts by Rolling , 2000, Algorithmica.

[5]  Arthur C. Sanderson,et al.  Planning robotic manipulation strategies for sliding objects , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[6]  Matthew T. Mason,et al.  Using Partial Sensor Information to Orient Parts , 1999, Int. J. Robotics Res..

[7]  Matthew T. Mason,et al.  The mechanics of manipulation , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[8]  Kenneth Y. Goldberg,et al.  Geometric Eccentricity and the Complexity of Manipulation Plans , 2000, Algorithmica.

[9]  D. Ando,et al.  Micro Manipulation Based on Micro Physics , 2001 .

[10]  Robert J. Wood,et al.  PROTOTYPING MILLIROBOTS USING DEXTROUS MICROASSEMBLY AND FOLDING , 2000 .

[11]  D. Meek,et al.  Empty-shape triangulation algorithms , 1994 .

[12]  Antonio Bicchi,et al.  Manipulation of polyhedral parts by rolling , 1997, Proceedings of International Conference on Robotics and Automation.

[13]  Kevin M. Lynch,et al.  Parts Feeding on a Conveyor with a One Joint Robot , 2000, Algorithmica.

[14]  N. C. MacDonald,et al.  Upper and Lower Bounds for Programmable Vector Fields with Applications to MEMS and Vibratory Plate Parts Feeders , 1996 .

[15]  B. Donald,et al.  Upper and Lower Bounds for Programmable VectorFields with Applications to MEMS and Vibratory , 1996 .

[16]  Bruce Randall Donald,et al.  Algorithmic and Computational Robotics: New Directions , 2001 .

[17]  H. Miyazaki,et al.  Fabrication of 3D quantum optical devices by pick-and-place forming , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[18]  Fumihito Arai,et al.  Three-dimensional bio-micromanipulation under the microscope , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  Bruce Randall Donald,et al.  Part orientation with one or two stable equilibria using programmable force fields , 2000, IEEE Trans. Robotics Autom..

[20]  Arthur C. Sanderson,et al.  Planning robotic manipulation strategies for workpieces that slide , 1988, IEEE J. Robotics Autom..

[21]  Shahram Payandeh,et al.  Flexible Part Orienting Using Rotation Direction and Force Measurements , 2001, Int. J. Robotics Res..

[22]  Tomomasa Sato,et al.  Pick and place operation of a micro-object with high reliability and precision based on micro-physics under SEM , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Tomomasa Sato,et al.  Micro object handling system with concentrated visual fields and new handling skills , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[25]  A. Marigo,et al.  Dexterity through rolling: manipulation of unknown objects , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[26]  Matthew Thomas Mason,et al.  Manipulator grasping and pushing operations , 1982 .

[27]  E. Piaggio Dexterity Through Rolling: Manipulation of Unknown Objects , 1999 .

[28]  Ronald S. Fearing,et al.  Alignment of microparts using force-controlled pushing , 1998, Other Conferences.

[29]  Antonio Bicchi,et al.  Dexterity through Rolling: Towards Manipulation of Unknown Objects , 1996 .

[30]  Yasumichi Aiyama,et al.  Planning of graspless manipulation by multiple robot fingers , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[31]  Lydia E. Kavraki,et al.  Part orientation with programmable vector fields: two stable equilibria for most parts , 1997, Proceedings of International Conference on Robotics and Automation.

[32]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[33]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[34]  David J. Kriegman,et al.  Complete algorithms for reorienting polyhedral parts using a pivoting gripper , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[35]  Mark H. Overmars,et al.  Computing fence designs for orienting parts , 1998, Comput. Geom..

[36]  Bruce Randall Donald,et al.  Programmable Force Fields for Distributed Manipulation, with Applications to MEMS Actuator Arrays and Vibratory Parts Feeders , 1999, Int. J. Robotics Res..

[37]  Hajime Hitakawa,et al.  Advanced parts orientation system has wide application , 1988 .

[38]  Lydia E. Kavraki,et al.  A geometric approach to designing a programmable force field with a unique stable equilibrium for parts in the plane , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[39]  Ken Goldberg,et al.  Stochastic plans for robotic manipulation , 1991 .

[40]  Nina Barrameda Zumel,et al.  A nonprehensile method for reliable parts orienting , 1997 .

[41]  Bruce Randall Donald,et al.  Algorithms for Sensorless Manipulation Using a Vibrating Surface , 2000, Algorithmica.