Grid Cells and Place Cells: An Integrated View of their Navigational and Memory Function

Much has been learned about the hippocampal/entorhinal system, but an overview of how its parts work in an integrated way is lacking. One question regards the function of entorhinal grid cells. We propose here that their fundamental function is to provide a coordinate system for producing mind-travel in the hippocampus, a process that accesses associations with upcoming positions. We further propose that mind-travel occurs during the second half of each theta cycle. By contrast, the first half of each theta cycle is devoted to computing current position using sensory information from the lateral entorhinal cortex (LEC) and path integration information from the medial entorhinal cortex (MEC). This model explains why MEC lesions can abolish hippocampal phase precession but not place fields.

[1]  Neil Burgess,et al.  What do grid cells contribute to place cell firing? , 2014, Trends in Neurosciences.

[2]  Larry R Squire,et al.  Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. , 2014, Cell reports.

[3]  James J. Knierim,et al.  CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation , 2014, Neuron.

[4]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[5]  C. Barnes,et al.  Back to the Future: Preserved Hippocampal Network Activity during Reverse Ambulation , 2014, The Journal of Neuroscience.

[6]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[7]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[9]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[10]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[11]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[12]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[13]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[14]  M. Moser,et al.  Understanding memory through hippocampal remapping , 2008, Trends in Neurosciences.

[15]  Mark P. Brandon,et al.  THE MEDIAL ENTORHINAL CORTEX IS NECESSARY FOR TEMPORAL ORGANIZATION OF HIPPOCAMPAL NEURONAL ACTIVITY , 2015, Nature Neuroscience.

[16]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[17]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[18]  A. Redish Beyond the Cognitive Map: From Place Cells to Episodic Memory , 1999 .

[19]  Christof Koch,et al.  Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks , 2014, Neuron.

[20]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Sachin S. Deshmukh,et al.  Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[23]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[24]  Uğur M Erdem,et al.  A goal‐directed spatial navigation model using forward trajectory planning based on grid cells , 2012, The European journal of neuroscience.

[25]  Lisa M. Giocomo,et al.  Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after‐spike dynamics , 2012, Hippocampus.

[26]  G. Buzsáki,et al.  Forward and reverse hippocampal place-cell sequences during ripples , 2007, Nature Neuroscience.

[27]  G. Buzsáki,et al.  Internally-organized mechanisms of the head direction sense , 2015, Nature Neuroscience.

[28]  Ehren L. Newman,et al.  Phase coding by grid cells in unconstrained environments: two‐dimensional phase precession , 2013, The European journal of neuroscience.

[29]  Chris Eliasmith,et al.  A Controlled Attractor Network Model of Path Integration in the Rat , 2005, Journal of Computational Neuroscience.

[30]  S. Romani,et al.  Theta sequences are essential for internally generated hippocampal firing fields , 2014, Nature Neuroscience.

[31]  C. Barry,et al.  Theta phase precession of grid and place cell firing in open environments , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[33]  Paul F. M. J. Verschure,et al.  A Model of Grid Cells Based on a Twisted Torus Topology , 2007, Int. J. Neural Syst..

[34]  M. Hasselmo,et al.  Stimulation in Hippocampal Region CA1 in Behaving Rats Yields Long-Term Potentiation when Delivered to the Peak of Theta and Long-Term Depression when Delivered to the Trough , 2003, The Journal of Neuroscience.

[35]  H. Eichenbaum,et al.  Robust Conjunctive Item–Place Coding by Hippocampal Neurons Parallels Learning What Happens Where , 2009, The Journal of Neuroscience.

[36]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[37]  Anoopum S. Gupta,et al.  Segmentation of spatial experience by hippocampal theta sequences , 2012, Nature Neuroscience.

[38]  Terrence J. Sejnowski,et al.  Place Cell Rate Remapping by CA3 Recurrent Collaterals , 2014, PLoS Comput. Biol..

[39]  L F Abbott,et al.  Modular Realignment of Entorhinal Grid Cell Activity as a Basis for Hippocampal Remapping , 2011, The Journal of Neuroscience.

[40]  A D Redish,et al.  Prediction, sequences and the hippocampus , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[42]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[43]  Mayank R Mehta,et al.  Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality , 2014, Nature Neuroscience.

[44]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[45]  Marco Idiart,et al.  The single place fields of CA3 cells: A two‐stage transformation from grid cells , 2012, Hippocampus.

[46]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[47]  André A. Fenton,et al.  Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation , 2012, Front. Neural Circuits.

[48]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[49]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[50]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[51]  O Jensen,et al.  Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. , 1996, Learning & memory.

[52]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[53]  David J. Foster,et al.  Hippocampal theta sequences , 2007, Hippocampus.

[54]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[55]  B. McNaughton,et al.  Self-Motion and the Hippocampal Spatial Metric , 2005, The Journal of Neuroscience.

[56]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[57]  Michael E. Hasselmo,et al.  A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning , 2002, Neural Computation.

[58]  Surya Ganguli,et al.  Environmental Boundaries as an Error Correction Mechanism for Grid Cells , 2015, Neuron.

[59]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[60]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[61]  G. Buzsáki,et al.  Distinct Representations and Theta Dynamics in Dorsal and Ventral Hippocampus , 2010, The Journal of Neuroscience.

[62]  M. Andersson,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005 .

[63]  Michaël Zugaro,et al.  Reversed theta sequences of hippocampal cell assemblies during backward travel , 2014, Nature Neuroscience.

[64]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  S. Leutgeb,et al.  Spatial and memory circuits in the medial entorhinal cortex , 2015, Current Opinion in Neurobiology.

[66]  C. Barnes,et al.  Greater running speeds result in altered hippocampal phase sequence dynamics , 2012, Hippocampus.

[67]  Bruce L. McNaughton,et al.  Representation of Three-Dimensional Space in the Hippocampus of Flying Bats , 2013 .

[68]  Andrew M. Wikenheiser,et al.  Hippocampal theta sequences reflect current goals , 2015, Nature Neuroscience.

[69]  Jozsef Csicsvari,et al.  Behavioral / Systems / Cognitive Hippocampal Place Cells Can Encode Multiple Trial-Dependent Features through Rate Remapping , 2012 .

[70]  Richard Kempter,et al.  Modeling Inheritance of Phase Precession in the Hippocampal Formation , 2014, The Journal of Neuroscience.

[71]  J. O’Keefe,et al.  Neural Representations of Location Composed of Spatially Periodic Bands , 2012, Science.

[72]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[73]  Caswell Barry,et al.  Grid cell symmetry is shaped by environmental geometry , 2015, Nature.

[74]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[75]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[76]  David S. Touretzky,et al.  The Role of the Hippocampus in Solving the Morris Water Maze , 1998, Neural Computation.

[77]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[78]  John A. King,et al.  How vision and movement combine in the hippocampal place code , 2012, Proceedings of the National Academy of Sciences.

[79]  Caswell Barry,et al.  From A to Z: a potential role for grid cells in spatial navigation , 2012, Neural systems & circuits.

[80]  Michael E. Hasselmo,et al.  A hierarchical model of goal directed navigation selects trajectories in a visual environment , 2015, Neurobiology of Learning and Memory.

[81]  Paul F. M. J. Verschure,et al.  A Signature of Attractor Dynamics in the CA3 Region of the Hippocampus , 2014, PLoS Comput. Biol..

[82]  B. McNaughton,et al.  Bimodality of theta phase precession in hippocampal place cells in freely running rats. , 2002, Journal of neurophysiology.

[83]  J. Jacobs Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  Chantal E. Stern,et al.  Theta rhythm and the encoding and retrieval of space and time , 2014, NeuroImage.

[85]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[86]  Mattias P. Karlsson,et al.  Awake replay of remote experiences in the hippocampus , 2009, Nature Neuroscience.

[87]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[89]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[90]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[91]  Mark P. Brandon,et al.  Head direction is coded more strongly than movement direction in a population of entorhinal neurons , 2015, Brain Research.

[92]  J. Lisman,et al.  The Input–Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields , 2009, The Journal of Neuroscience.

[93]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[94]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[95]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[96]  Jonathan D. Cohen,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006 .

[97]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.