Control of Nonprehensile Manipulation

Nonprehensile manipulation is the process of manipulating a part without a form- or force-closure grasp. Without such a grasp, the part is free to roll, slide, or break contact with the robot(s) manipulating it. Controlling the motion of a part using nonprehensile manipulation becomes the challenging problem of controlling a dynamic system with equations of motion incorporating the robot and part geometry, friction and restitution laws, and changing dynamics due to changing contact states. Drawing from the work of others and our own previous work, in this paper we pose several open problems in the control of nonprehensile manipulation.

[1]  Richard M. Murray,et al.  Controllability of simple mechanical control systems , 1997 .

[2]  Antonio Bicchi,et al.  Planning Motions of Polyhedral Parts by Rolling , 2000, Algorithmica.

[3]  Kevin M. Lynch,et al.  Rolling Manipulation with a Single Control , 2002, Int. J. Robotics Res..

[4]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[5]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[6]  Kevin M. Lynch,et al.  Parts Feeding on a Conveyor with a One Joint Robot , 2000, Algorithmica.

[7]  Naoji Shiroma,et al.  Roles of shape and motion in dynamic manipulation , 1998 .

[8]  L. Fu,et al.  Controllability of spacecraft systems in a central gravitational field , 1994, IEEE Trans. Autom. Control..

[9]  Joel W. Burdick,et al.  Controllability of kinematic control systems on stratified configuration spaces , 2001, IEEE Trans. Autom. Control..

[10]  L. Dai,et al.  Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability , 1993 .

[11]  Howie Choset,et al.  Distributed Manipulation Using Discrete Actuator Arrays , 2001, Int. J. Robotics Res..

[12]  Daniel E. Koditschek,et al.  Planning and Control of Robotic Juggling and Catching Tasks , 1994, Int. J. Robotics Res..

[13]  Joel W. Burdick,et al.  Global exponential stabilizability for distributed manipulation systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  Daniel E. Koditschek,et al.  Further progress in robot juggling: the spatial two-juggle , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Lydia E. Kavraki,et al.  A geometric approach to designing a programmable force field with a unique stable equilibrium for parts in the plane , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  V. Jurdjevic Geometric control theory , 1996 .

[17]  Kevin M. Lynch,et al.  Dynamic Nonprehensile Manipulation: Controllability, Planning, and Experiments , 1999, Int. J. Robotics Res..

[18]  Kevin M. Lynch,et al.  Controllability of a planar body with unilateral thrusters , 1999, IEEE Trans. Autom. Control..

[19]  Joel W. Burdick,et al.  On the stability and design of distributed manipulation control systems , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Daniel E. Koditschek,et al.  Progress in spatial robot juggling , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[21]  Joel W. Burdick,et al.  Stabilization of Systems with Changing Dynamics , 1998, HSCC.

[22]  Jean-Daniel Boissonnat,et al.  Algorithmic Foundations of Robotics V, Selected Contributions of the Fifth International Workshop on the Algorithmic Foundations of Robotics, WAFR 2002, Nice, France, December 15-17, 2002 , 2004, WAFR.

[23]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[24]  B. Donald,et al.  A Distributed, Universal Device For Planar Parts Feeding: Unique Part Orientation in Programmable Force Fields , 2000 .

[25]  Joel W. Burdick,et al.  Issues in controllability and motion planning for overconstrained wheeled vehicles , 2000 .

[26]  Arturo Zavala-Río,et al.  On the control of complementary-slackness juggling mechanical systems , 2000, IEEE Trans. Autom. Control..

[27]  Jonathan Luntz,et al.  Closed-Loop Stability of Distributed Manipulation , 2000 .

[28]  Kevin M. Lynch,et al.  Locally controllable manipulation by stable pushing , 1999, IEEE Trans. Robotics Autom..

[29]  Daniel E. Koditschek,et al.  From stable to chaotic juggling: theory, simulation, and experiments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[30]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[31]  A. D. Lewis,et al.  When is a mechanical control system kinematic? , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[32]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[33]  Yan-Bin Jia,et al.  Observing pose and motion through contact , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[35]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[36]  Daniel E. Koditschek,et al.  Toward a dynamical pick and place , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[37]  Naoji Shiroma,et al.  The roles of shape and motion in dynamic manipulation: the butterfly example , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[38]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[39]  A. D. Lewis,et al.  Controllable kinematic reductions for mechanical systems: concepts,computational tools, and examples , 2001 .

[40]  Kevin M. Lynch,et al.  Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..

[41]  Todd D. Murphey,et al.  Control of multiple model systems , 2002 .

[42]  Mark W. Spong Impact controllability of an air hockey puck , 2001 .

[43]  James C. Alexander,et al.  On the Kinematics of Wheeled Mobile Robots , 1989, Int. J. Robotics Res..

[44]  Kevin M. Lynch,et al.  Recurrence, controllability, and stabilization of juggling , 2001, IEEE Trans. Robotics Autom..