Physics-based robot motion planning in dynamic multi-body environments

Traditional motion planning focuses on the problem of safely navigating a robot through an obstacle-ridden environment. In this thesis, we address the question of how to perform robot motion planning in complex domains, with goals that go beyond collision-free navigation. Specifically, we are interested in problems that impose challenging constraints on the intermediate states of a plan, and problems that require the purposeful manipulation of non-actuated bodies, in environments that contain multiple, physically interacting bodies with varying degrees of controllability and predictability. Examples of such domains include physical games, such as robot soccer, where the controlled robot has to deliver the ball into the opponent's goal. For these domains, navigation only constitutes a small part of the overall planning problem. Additional planning challenges include accurately modeling and exploiting the dynamic interactions with other non-actuated bodies (e.g., dribbling a ball), and the problem of predicting and avoiding foreign-controlled bodies (e.g., opponent robots). To plan in such domains, this thesis introduces physics-based planning methods, relying on rich models that aim to reflect the detailed dynamics of the real physical world. We introduce non-deterministic Skills and Tactics as an intelligent action sampling model for effectively reducing the size of the searchable action space. We contribute two efficient Tactics-driven planning algorithms, BK-RRT and BK-BGT, and we evaluate their performance across several challenging domains. We contribute a physics model parameter optimization method for increasing the planner's physical prediction accuracy, resulting in significantly improved real-world execution success rates. Additionally, we contribute Variable Level-Of-Detail (VLOD) planning, a method for reducing overall planning time in uncertain multi-body execution environments. Besides relying on an extensive simulated testbed, we apply and evaluate our planning approaches in two challenging real-world robot domains. We contribute the robot minigolf domain, where a robot uses physics-based planning methods to solve freely configurable minigolf-like courses, e.g., by purposefully bouncing a ball off from obstacles. We furthermore contribute a robot soccer attacker behavior that uses physics-based planning to out-dribble opponents, which has been successfully tested as part of the "CMDragons" robot soccer Small Size League team at the BoboCup world cup in 2009.

[1]  Tim Laue,et al.  Automatic Parameter Optimization for a Dynamic Robot Simulation , 2009, RoboCup.

[2]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[4]  Musa Jouaneh,et al.  Watch out, Tiger Woods![golf playing robot] , 2003, IEEE Robotics Autom. Mag..

[5]  Thomas Röfer,et al.  A Behavior Architecture for Autonomous Mobile Robots Based on Potential Fields , 2004, RoboCup.

[6]  Marcelo H. Ang,et al.  Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[7]  Suman Chakravorty,et al.  Hierarchical motion planning under uncertainty , 2007, 2007 46th IEEE Conference on Decision and Control.

[8]  John E. Laird,et al.  Using a Computer Game to Develop Advanced AI , 2001, Computer.

[9]  Brett Browning,et al.  STP: Skills, tactics, and plays for multi-robot control in adversarial environments , 2005 .

[10]  Pekka Isto,et al.  Constructing probabilistic roadmaps with powerful local planning and path optimization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[12]  Kostas E. Bekris,et al.  Greedy but Safe Replanning under Kinodynamic Constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[13]  Oliver Brock,et al.  Elastic Roadmaps: Globally Task-Consistent Motion for Autonomous Mobile Manipulation in Dynamic Environments , 2006, Robotics: Science and Systems.

[14]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[15]  John E. Laird,et al.  It knows what you're going to do: adding anticipation to a Quakebot , 2001, AGENTS '01.

[16]  Thierry Siméon,et al.  Manipulation Planning with Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[17]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning , 2010, IEEE Robotics & Automation Magazine.

[18]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[19]  Nik A. Melchior,et al.  Particle RRT for Path Planning in Very Rough Terrain , 2007 .

[20]  Tamim Asfour,et al.  Manipulation Planning Among Movable Obstacles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[22]  Lydia E. Kavraki,et al.  Motion Planning in the Presence of Drift, Underactuation and Discrete System Changes , 2005, Robotics: Science and Systems.

[23]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[24]  Masatoshi Nakamura,et al.  Telerobotic mini-golf: system design for enhanced teleoperator performance , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Manuela M. Veloso,et al.  The CMUnited-97 robotic soccer team: perception and multiagent control , 1998, AGENTS '98.

[26]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[27]  Manuela M. Veloso,et al.  SSL-Vision: The Shared Vision System for the RoboCup Small Size League , 2009, RoboCup.

[28]  Manuela M. Veloso,et al.  Safe Multirobot Navigation Within Dynamics Constraints , 2006, Proceedings of the IEEE.

[29]  Steven M. LaValle,et al.  Current Issues in Sampling-Based Motion Planning , 2005, ISRR.

[30]  Manuela Veloso,et al.  Real-time motion planning and safe navigation in dynamic multi-robot environments , 2006 .

[31]  John F. Hughes,et al.  Plausible motion simulation for computer graphics animation , 1996 .

[32]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[33]  Manuela M. Veloso,et al.  Fast and accurate vision-based pattern detection and identification , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[34]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[35]  Alonzo Kelly,et al.  Differentially constrained motion replanning using state lattices with graduated fidelity , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[37]  Emanuele Menegatti,et al.  How a Cooperative Behavior can emerge from a Robot Team , 2004, DARS.

[38]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[39]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[40]  Anthony Stentz Optimal and Efficient Path Planning for Unknown and Dynamic Environments , 1993 .

[41]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[42]  Tamim Asfour,et al.  Adaptive motion planning for humanoid robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[44]  N. G. Jabson,et al.  THE AUTONOMOUS GOLF PLAYING MICRO ROBOT: WITH GLOBAL VISION AND FUZZY LOGIC CONTROLLER , 2008 .

[45]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[46]  D. Baraff Physically Based Modeling Rigid Body Simulation , 1992 .

[47]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[48]  James J. Kuffner,et al.  Effective sampling and distance metrics for 3D rigid body path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[49]  Eric Horvitz,et al.  Reasoning about beliefs and actions under computational resource constraints , 1987, Int. J. Approx. Reason..

[50]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, ACM Trans. Graph..

[51]  Manuela M. Veloso,et al.  An evolutionary approach to gait learning for four-legged robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[52]  Allison M. Okamura,et al.  An overview of dexterous manipulation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[53]  Michael A. Greenspan,et al.  An Event-Based Pool Physics Simulator , 2006, ACG.

[54]  Christopher G. Atkeson,et al.  Task-level robot learning: juggling a tennis ball more accurately , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[55]  Brett Browning,et al.  Plays as Effective Multiagent Plans Enabling Opponent-Adaptive Play Selection , 2004, ICAPS.

[56]  Sven Behnke,et al.  A Hierarchy of Reactive Behaviors Handles Complexity , 2000, Balancing Reactivity and Social Deliberation in Multi-Agent Systems.

[57]  Dinesh Manocha,et al.  Constraint‐based motion synthesis for deformable models , 2008, Comput. Animat. Virtual Worlds.

[58]  Nidhi Kalra,et al.  Replanning with RRTs , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[59]  Manfred Lau,et al.  Precomputed search trees: planning for interactive goal-driven animation , 2006, SCA '06.

[60]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[61]  Yan-Bin Jia,et al.  A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting , 2008, WAFR.

[62]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[63]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[64]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[65]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[66]  Jessica K. Hodgins,et al.  Constraint-based motion optimization using a statistical dynamic model , 2007, ACM Trans. Graph..

[67]  Petros Faloutsos,et al.  Interactive motion correction and object manipulation , 2007, SI3D.

[68]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[69]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[70]  Raffaello D'Andrea The Cornell RoboCup Robot Soccer Team: 1999-2003 , 2005, Handbook of Networked and Embedded Control Systems.

[71]  Thorsten Schmitt,et al.  Fast Image Segmentation, Object Recognition and Localization in a RoboCup Scenario , 1999, RoboCup.

[72]  Manuela Veloso,et al.  CMDragons 2007 Team Description , 2007 .

[73]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[74]  Raffaello D'Andrea,et al.  Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle , 2004, Robotics Auton. Syst..

[75]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[76]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[77]  Siddhartha S. Srinivasa,et al.  Hierarchical planning architectures for mobile manipulation tasks in indoor environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[78]  Manfred Lau,et al.  Behavior planning for character animation , 2005, SCA '05.

[79]  David Baraff,et al.  Analytical methods for dynamic simulation of non-penetrating rigid bodies , 1989, SIGGRAPH.

[80]  Manuela M. Veloso,et al.  Efficient physics-based planning: sampling search via non-deterministic tactics and skills , 2009, AAMAS.

[81]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[82]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[83]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[84]  Vahab S. Mirrokni,et al.  A Fast Vision System for Middle Size Robots in RoboCup , 2001, RoboCup.

[85]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[86]  Manuela M. Veloso,et al.  Real-time randomized path planning for robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[87]  Alfredo Weitzenfeld,et al.  Real Time Vision System for a Small Size League Team , 2004 .

[88]  James J. Kuffner,et al.  Adaptive workspace biasing for sampling-based planners , 2008, 2008 IEEE International Conference on Robotics and Automation.