Multilevel Motion Planning: A Fiber Bundle Formulation

Motion planning problems involving high-dimensional state spaces can often be solved significantly faster by using multilevel abstractions. While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles, which allows us to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces. Given such a structure and a corresponding admissible constraint function, we can develop highly efficient and optimal search-based motion planning methods for high-dimensional state spaces. Our contributions are the following: We first introduce the terminology of fiber bundles, in particular the notion of restrictions and sections. Second, we use the notion of restrictions and sections to develop novel multilevel motion planning algorithms, which we call QRRT* and QMP*. We show these algorithms to be probabilistically complete and almost-surely asymptotically optimal. Third, we develop a novel recursive path section method based on an L1 interpolation over path restrictions, which we use to quickly find feasible path sections. And fourth, we evaluate all novel algorithms against all available OMPL algorithms on benchmarks of eight challenging environments ranging from 21 to 100 degrees of freedom, including multiple robots and nonholonomic constraints. Our findings support the efficiency of our novel algorithms and the benefit of exploiting multilevel abstractions using the terminology of fiber bundles.

[1]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[2]  Marc Toussaint,et al.  Optimized directed roadmap graph for multi-agent path finding using stochastic gradient descent , 2020, SAC.

[3]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[4]  Kai Oliver Arras,et al.  RRT-based nonholonomic motion planning using any-angle path biasing , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Roni Stern,et al.  Research Challenges and Opportunities in Multi-Agent Path Finding and Multi-Agent Pickup and Delivery Problems , 2020, AAMAS.

[6]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[7]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[8]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[10]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[11]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[12]  Kostas E. Bekris,et al.  dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning , 2019, Autonomous Robots.

[13]  Bryan Reimer,et al.  MIT Advanced Vehicle Technology Study: Large-Scale Naturalistic Driving Study of Driver Behavior and Interaction With Automation , 2017, IEEE Access.

[14]  Lydia E. Kavraki,et al.  Resolution Independent Density Estimation for motion planning in high-dimensional spaces , 2013, 2013 IEEE International Conference on Robotics and Automation.

[15]  Nancy M. Amato,et al.  Dynamic Region-biased Rapidly-exploring Random Trees , 2016, WAFR.

[16]  Thierry Siméon,et al.  Disassembly Path Planning for Complex Articulated Objects , 2007, IEEE Transactions on Robotics.

[17]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[18]  Alex Lascarides,et al.  Interpretable Latent Spaces for Learning from Demonstration , 2018, CoRL.

[19]  Lydia E. Kavraki,et al.  A Sampling-Based Tree Planner for Systems With Complex Dynamics , 2012, IEEE Transactions on Robotics.

[20]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[21]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[22]  Ioannis Havoutis,et al.  Learning Sequences of Approximations for Hierarchical Motion Planning , 2020, ICAPS.

[23]  Jonathan D. Gammell,et al.  Advanced BIT* (ABIT*): Sampling-Based Planning with Advanced Graph-Search Techniques , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Wenjie Lu,et al.  A Unified Closed-Loop Motion Planning Approach For An I-AUV In Cluttered Environment With Localization Uncertainty , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[25]  Dan Halperin,et al.  Asymptotically near-optimal RRT for fast, high-quality, motion planning , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Tamim Asfour,et al.  Adaptive motion planning for humanoid robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Kiril Solovey,et al.  Complexity of Planning , 2020, Encyclopedia of Robotics.

[28]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[29]  Howie Choset,et al.  Subdimensional expansion for multirobot path planning , 2015, Artif. Intell..

[30]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  Maxim Likhachev,et al.  Planning with adaptive dimensionality for mobile manipulation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[32]  Boris Baginski,et al.  Local motion planning for manipulators based on shrinking and growing geometry models , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[33]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[34]  Dinesh Manocha,et al.  Motion planning of human-like robots using constrained coordination , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[35]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[36]  Peter J. Stuckey,et al.  Searching with Consistent Prioritization for Multi-Agent Path Finding , 2018, AAAI.

[37]  Timothy Bretl,et al.  Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem , 2006, Int. J. Robotics Res..

[38]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[39]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[40]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[41]  Maxim Likhachev,et al.  Multi-Heuristic A* , 2014, Int. J. Robotics Res..

[42]  Alberto Rodriguez,et al.  In-Hand Manipulation via Motion Cones , 2018, Robotics: Science and Systems.

[43]  Lydia E. Kavraki,et al.  Fast Tree-Based Exploration of State Space for Robots with Dynamics , 2004, WAFR.

[44]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[45]  Steven M. LaValle,et al.  The sampling-based neighborhood graph: an approach to computing and executing feedback motion strategies , 2004, IEEE Transactions on Robotics and Automation.

[46]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[47]  Dan Halperin,et al.  On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages , 2012, IEEE Transactions on Automation Science and Engineering.

[48]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[49]  Robert Fitch,et al.  Sampling‐based hierarchical motion planning for a reconfigurable wheel‐on‐leg planetary analogue exploration rover , 2019, J. Field Robotics.

[50]  Kostas E. Bekris,et al.  Probabilistic Completeness of RRT for Geometric and Kinodynamic Planning With Forward Propagation , 2018, IEEE Robotics and Automation Letters.

[51]  M. Farber Configuration Spaces and Robot Motion Planning Algorithms , 2017, 1701.02083.

[52]  Stefan Edelkamp,et al.  Heuristic Search - Theory and Applications , 2011 .

[53]  Achim Menges,et al.  Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[54]  James J. Kuffner,et al.  Adaptive workspace biasing for sampling-based planners , 2008, 2008 IEEE International Conference on Robotics and Automation.

[55]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[56]  Kostas E. Bekris,et al.  Sparse roadmap spanners for asymptotically near-optimal motion planning , 2014, Int. J. Robotics Res..

[57]  Robert Penicka,et al.  Sampling-based motion planning of 3D solid objects guided by multiple approximate solutions , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[58]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[59]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[60]  Oliver Brock,et al.  Decomposition-based motion planning: a framework for real-time motion planning in high-dimensional configuration spaces , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[61]  S. Shankar Sastry,et al.  Hierarchically consistent control systems , 2000, IEEE Trans. Autom. Control..

[62]  Marc Toussaint,et al.  Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning , 2018, Robotics: Science and Systems.

[63]  Wolfram Burgard,et al.  Learning to guide random tree planners in high dimensional spaces , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Ho-Lun Cheng,et al.  Multi-level free-space dilation for sampling narrow passages in PRM planning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[65]  Aaron D. Ames,et al.  Footstep and motion planning in semi-unstructured environments using randomized possibility graphs , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[66]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[67]  Oliver Brock,et al.  Lessons from the Amazon Picking Challenge: Four Aspects of Building Robotic Systems , 2016, IJCAI.

[68]  Vijay Kumar,et al.  Topological constraints in search-based robot path planning , 2012, Auton. Robots.

[69]  Stefan Edelkamp,et al.  Multi‐group motion planning in virtual environments , 2018, Comput. Animat. Virtual Worlds.

[70]  Inna Sharf,et al.  Sampling-based A* algorithm for robot path-planning , 2014, Int. J. Robotics Res..

[71]  Jung-Su Ha,et al.  Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image , 2020, Robotics: Science and Systems.

[72]  Sudeep Sarkar,et al.  A Quotient Space Formulation for Statistical Analysis of Graphical Data , 2019, ArXiv.

[73]  Yu-Chi Chang,et al.  Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[75]  Manuel Lopes,et al.  Multi-bound tree search for logic-geometric programming in cooperative manipulation domains , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[76]  Ross A. Knepper,et al.  Decentralized Multi-Agent Navigation Planning with Braids , 2016, WAFR.

[77]  Marc Toussaint,et al.  Rapidly-Exploring Quotient-Space Trees: Motion Planning using Sequential Simplifications , 2019, ISRR.

[78]  R. Choukri,et al.  On the sheaf theory , 2006 .

[79]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[80]  Lydia E. Kavraki,et al.  Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning , 2010, IEEE Transactions on Robotics.

[81]  George Konidaris,et al.  On the necessity of abstraction , 2019, Current Opinion in Behavioral Sciences.

[82]  K. Passino,et al.  A Metric Space Approach to the Specification of the Heuristic Function for the A* Algorithm , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[83]  Siddhartha S. Srinivasa,et al.  Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[85]  Russ Tedrake,et al.  Sample-Based Planning with Volumes in Configuration Space , 2011, ArXiv.

[86]  Michael Meurer,et al.  Dispertio: Optimal Sampling For Safe Deterministic Motion Planning , 2020, IEEE Robotics and Automation Letters.

[87]  Subhrajit Bhattacharya,et al.  Path homotopy invariants and their application to optimal trajectory planning , 2017, Annals of Mathematics and Artificial Intelligence.

[88]  N. Steenrod Topology of Fibre Bundles , 1951 .

[89]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[90]  Eiichi Yoshida Humanoid motion planning using multi-level DOF exploitation based on randomized method , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[91]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[92]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[93]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[94]  Nancy M. Amato,et al.  Iterative relaxation of constraints: a framework for improving automated motion planning , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[95]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[96]  Dong-Hyung Kim,et al.  Efficient path planning for high-DOF articulated robots with adaptive dimensionality , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[97]  Lydia E. Kavraki,et al.  Online Multilayered Motion Planning with Dynamic Constraints for Autonomous Underwater Vehicles , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[98]  Emilio Frazzoli,et al.  RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning , 2016, Int. J. Robotics Res..

[99]  Charles Richter,et al.  Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments , 2016, ISRR.

[100]  Gaurav S. Sukhatme,et al.  Trajectory Planning for Quadrotor Swarms , 2018, IEEE Transactions on Robotics.

[101]  Maxim Likhachev,et al.  Incremental Planning with Adaptive Dimensionality , 2013, ICAPS.

[102]  Taku Komura,et al.  Hierarchical Motion Planning in Topological Representations , 2012, Robotics: Science and Systems.

[103]  Oliver Brock,et al.  Balancing Exploration and Exploitation in Sampling-Based Motion Planning , 2014, IEEE Transactions on Robotics.

[104]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[105]  Jean-Claude Latombe,et al.  A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking , 2001, ISRR.

[106]  Kris Hauser,et al.  Lazy collision checking in asymptotically-optimal motion planning , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[107]  Lydia E. Kavraki,et al.  Kinodynamic Motion Planning by Interior-Exterior Cell Exploration , 2008, WAFR.

[108]  Maher Khatib,et al.  Sensor-Based Motion Control for Mobile Robots , 1996 .

[109]  Lydia E. Kavraki,et al.  Exploring implicit spaces for constrained sampling-based planning , 2019, Int. J. Robotics Res..

[110]  Jérôme Barraquand,et al.  A method of progressive constraints for manipulation planning , 1997, IEEE Trans. Robotics Autom..

[111]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search , 2017, Int. J. Robotics Res..

[112]  Steven M. LaValle,et al.  Space-filling trees: A new perspective on incremental search for motion planning , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[113]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[114]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[115]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[116]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[117]  Jason M. O'Kane,et al.  Analysis of Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension , 2018, ArXiv.

[118]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[119]  Michael Farber,et al.  Invitation to Topological Robotics , 2008, Zurich Lectures in Advanced Mathematics.

[120]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[121]  Thierry Siméon,et al.  Path Deformation Roadmaps: Compact Graphs with Useful Cycles for Motion Planning , 2008, Int. J. Robotics Res..

[122]  Andreas Orthey,et al.  Visualizing Local Minima in Multi-Robot Motion Planning using Multilevel Morse Theory. , 2020 .

[123]  Robert Fitch,et al.  Motion Planning for Reconfigurable Mobile Robots Using Hierarchical Fast Marching Trees , 2016, WAFR.

[124]  Han-Lim Choi,et al.  Topology-guided path integral approach for stochastic optimal control in cluttered environment , 2019, Robotics Auton. Syst..

[125]  Stéphane Redon,et al.  ART‐RRT: As‐Rigid‐As‐Possible exploration of ligand unbinding pathways , 2018, J. Comput. Chem..

[126]  Wenjie Lu,et al.  Heterogeneous Dimensionality Reduction for Efficient Motion Planning in High-Dimensional Spaces , 2020, IEEE Access.

[127]  Marco Pavone,et al.  Deterministic sampling-based motion planning: Optimality, complexity, and performance , 2015, ISRR.

[128]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[129]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[130]  Quang-Cuong Pham,et al.  A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis , 2017, IEEE Transactions on Robotics.

[131]  Léonard Jaillet,et al.  Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds , 2013, IEEE Transactions on Robotics.

[132]  Emilio Frazzoli,et al.  Efficient collision checking in sampling-based motion planning via safety certificates , 2016, Int. J. Robotics Res..

[133]  Lydia E. Kavraki,et al.  A scalable motion planner for high-dimensional kinematic systems , 2020, Int. J. Robotics Res..

[134]  Marc Toussaint,et al.  Motion Planning Explorer: Visualizing Local Minima Using a Local-Minima Tree , 2020, IEEE Robotics and Automation Letters.

[135]  Florian T. Pokorny,et al.  Topological trajectory classification with filtrations of simplicial complexes and persistent homology , 2016, Int. J. Robotics Res..

[136]  Oren Salzman,et al.  Sampling-based robot motion planning , 2019, Commun. ACM.

[137]  Taku Komura,et al.  Topology-based representations for motion planning and generalization in dynamic environments with interactions , 2013, Int. J. Robotics Res..

[138]  Siddhartha S. Srinivasa,et al.  Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles , 2019, ICAPS.

[139]  L. Tu,et al.  Differential Geometry: Connections, Curvature, and Characteristic Classes , 2017 .

[140]  Sean Quinlan Real-time modification of collision-free paths , 1994 .

[141]  Erion Plaku,et al.  Region-Guided and Sampling-Based Tree Search for Motion Planning With Dynamics , 2015, IEEE Transactions on Robotics.

[142]  Danica Kragic,et al.  High-dimensional Winding-Augmented Motion Planning with 2D topological task projections and persistent homology , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[143]  Siddhartha S. Srinivasa,et al.  Informed Sampling for Asymptotically Optimal Path Planning , 2018, IEEE Transactions on Robotics.

[144]  Bakir Lacevic,et al.  Improved C-Space Exploration and Path Planning for Robotic Manipulators Using Distance Information , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[145]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[146]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[147]  Bo Zhang,et al.  The Quotient Space Theory of Problem Solving , 2003, Fundam. Informaticae.

[148]  Marco Pavone,et al.  Robot Motion Planning in Learned Latent Spaces , 2018, IEEE Robotics and Automation Letters.

[149]  P. Svestka On probabilistic completeness and expected complexity for probabilistic path planning , 1996 .

[150]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[151]  Chonhyon Park,et al.  An Efficient Acyclic Contact Planner for Multiped Robots , 2018, IEEE Transactions on Robotics.

[152]  Eiichi Yoshida,et al.  Quotient-Space Motion Planning , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[153]  Lydia E. Kavraki,et al.  Benchmarking Motion Planning Algorithms: An Extensible Infrastructure for Analysis and Visualization , 2015, IEEE Robotics & Automation Magazine.

[154]  Dinko Osmankovic,et al.  Burs of free C-space: A novel structure for path planning , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[155]  Yoshihiko Nakamura,et al.  Admissible velocity propagation: Beyond quasi-static path planning for high-dimensional robots , 2017, Int. J. Robotics Res..