A Survey on Active Simultaneous Localization and Mapping: State of the Art and New Frontiers

—Active Simultaneous Localization and Mapping (SLAM) is the problem of planning and controlling the motion of a robot to build the most accurate and complete model of the surrounding environment. Since the first foundational work in active perception appeared, more than three decades ago, this field has received increasing attention across different scientific communities. This has brought about many different approaches and formulations, and makes a review of the current trends necessary and extremely valuable for both new and experienced researchers. In this work, we survey the state-of-the-art in active SLAM and take an in-depth look at the open challenges that still require attention to meet the needs of modern applications. After providing a historical perspective, we present a unified problem formulation and review the classical solution scheme, which decouples the problem into three stages that identify, select, and execute potential navigation actions. We then ana- lyze alternative approaches, including belief-space planning and modern techniques based on deep reinforcement learning, and review related work on multi-robot coordination. The manuscript concludes with a discussion of new research directions, addressing reproducible research, active spatial perception, and practical applications, among other topics.

[1]  Julio A. Placed,et al.  Enough is Enough: Towards Autonomous Uncertainty-driven Stopping Criteria , 2022, IFAC-PapersOnLine.

[2]  V. Indelman,et al.  Hypotheses Disambiguation in Retrospective , 2022, IEEE Robotics and Automation Letters.

[3]  BenchBot environments for active robotics (BEAR): Simulated data for active scene understanding research , 2022, The International Journal of Robotics Research.

[4]  Huazhong Yang,et al.  Explore-Bench: Data Sets, Metrics and Evaluations for Frontier-based and Deep-reinforcement-learning-based Autonomous Exploration , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[5]  V. Indelman,et al.  D2A-BSP: Distilled Data Association Belief Space Planning with Performance Guarantees Under Budget Constraints , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[6]  L. Carlone,et al.  Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization , 2022, Robotics: Science and Systems.

[7]  V. Indelman,et al.  Adaptive Information Belief Space Planning , 2022, IJCAI.

[8]  Nikolay Atanasov,et al.  Active SLAM over Continuous Trajectory and Control: A Covariance-Feedback Approach , 2021, 2022 American Control Conference (ACC).

[9]  L. Carlone,et al.  Hierarchical Representations and Explicit Memory: Learning Effective Navigation Policies on 3D Scene Graphs using Graph Neural Networks , 2021, 2022 International Conference on Robotics and Automation (ICRA).

[10]  V. Indelman,et al.  Simplified decision making in the belief space using belief sparsification , 2019, Int. J. Robotics Res..

[11]  Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration , 2022 .

[12]  Julio A. Placed,et al.  Fast Uncertainty Quantification for Active Graph SLAM , 2021, ArXiv.

[13]  José A. Castellanos,et al.  Fast Autonomous Robotic Exploration Using the Underlying Graph Structure , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Silvio Savarese,et al.  iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks , 2021, CoRL.

[15]  Vadim Indelman,et al.  FT-BSP: Focused Topological Belief Space Planning , 2021, IEEE Robotics and Automation Letters.

[16]  George J. Pappas,et al.  Sampling-based planning for non-myopic multi-robot information gathering , 2021, Autonomous Robots.

[17]  Shoudong Huang,et al.  Invariant EKF based 2D Active SLAM with Exploration Task , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Elena Lazkano,et al.  Active Mapping and Robot Exploration: A Survey , 2021, Sensors.

[19]  G. Dissanayake,et al.  Cramér–Rao Bounds and Optimal Design Metrics for Pose-Graph SLAM , 2021, IEEE Transactions on Robotics.

[20]  Nikolay Atanasov,et al.  Active Exploration and Mapping via Iterative Covariance Regulation over Continuous SE(3) Trajectories , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Alen Alempijevic,et al.  Approaches for Efficiently Detecting Frontier Cells in Robotics Exploration , 2021, Frontiers in Robotics and AI.

[22]  Luca Carlone,et al.  Kimera: From SLAM to spatial perception with 3D dynamic scene graphs , 2021, Int. J. Robotics Res..

[23]  Nikolay Atanasov,et al.  Active Bayesian Multi-class Mapping from Range and Semantic Segmentation Observations , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Kapil D. Katyal,et al.  High-Speed Robot Navigation using Predicted Occupancy Maps , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Steven L. Waslander,et al.  Uncertainty-Constrained Differential Dynamic Programming in Belief Space for Vision Based Robots , 2020, IEEE Robotics and Automation Letters.

[26]  Stjepan Bogdan,et al.  A Multi-Resolution Frontier-Based Planner for Autonomous 3D Exploration , 2020, IEEE Robotics and Automation Letters.

[27]  Joelle Pineau,et al.  Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program) , 2020, J. Mach. Learn. Res..

[28]  Adrien Bartoli,et al.  DefSLAM: Tracking and Mapping of Deforming Scenes From Monocular Sequences , 2019, IEEE Transactions on Robotics.

[29]  Tao Zhang,et al.  Deep reinforcement learning based mobile robot navigation: A review , 2021 .

[30]  Julio A. Placed,et al.  A Deep Reinforcement Learning Approach for Active SLAM , 2020, Applied Sciences.

[31]  Wenbo Zhao,et al.  Frontier-based Automatic-differentiable Information Gain Measure for Robotic Exploration of Unknown 3D Environments , 2020, ArXiv.

[32]  Shmuel Y. Hayoun,et al.  Integrating Deep-Learning-Based Image Completion and Motion Planning to Expedite Indoor Mapping , 2020, ArXiv.

[33]  Liang Lu,et al.  Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D Sensor , 2020, Sensors.

[34]  Barry Lennox,et al.  Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning , 2020, IEEE Transactions on Vehicular Technology.

[35]  V. Indelman,et al.  Experience-Based Prediction of Unknown Environments for Enhanced Belief Space Planning , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Joshua G. Mangelson,et al.  ARAS: Ambiguity-aware Robust Active SLAM based on Multi-hypothesis State and Map Estimations , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[37]  Yongcai Wang,et al.  A Survey of Filtering based Active Localization Methods , 2020, BDIOT.

[38]  Santhosh K. Ramakrishnan,et al.  Occupancy Anticipation for Efficient Exploration and Navigation , 2020, ECCV.

[39]  Yong-Jin Liu,et al.  View planning in robot active vision: A survey of systems, algorithms, and applications , 2020, Computational Visual Media.

[40]  Brendan Englot,et al.  Autonomous Exploration Under Uncertainty via Deep Reinforcement Learning on Graphs , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Kenji Shimada,et al.  Robotic Exploration of Unknown 2D Environment Using a Frontier-based Automatic-Differentiable Information Gain Measure , 2020, 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[42]  Shoudong Huang,et al.  Active SLAM for Mobile Robots With Area Coverage and Obstacle Avoidance , 2020, IEEE/ASME Transactions on Mechatronics.

[43]  Qichao Zhang,et al.  Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[44]  Michael Kaess,et al.  Active SLAM using 3D Submap Saliency for Underwater Volumetric Exploration , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[45]  George J. Pappas,et al.  Information Theoretic Active Exploration in Signed Distance Fields , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[46]  Ruslan Salakhutdinov,et al.  Learning to Explore using Active Neural SLAM , 2020, ICLR.

[47]  Shoudong Huang,et al.  Broadcast Your Weaknesses: Cooperative Active Pose-Graph SLAM for Multiple Robots , 2020, IEEE Robotics and Automation Letters.

[48]  Kao-Shing Hwang,et al.  End-to-End Navigation Strategy With Deep Reinforcement Learning for Mobile Robots , 2020, IEEE Transactions on Industrial Informatics.

[49]  Davide Scaramuzza,et al.  Voxel Map for Visual SLAM , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[50]  Stefan Leutenegger,et al.  Fast Frontier-based Information-driven Autonomous Exploration with an MAV , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Shuo Wang,et al.  A high-efficiency, information-based exploration path planning method for active simultaneous localization and mapping , 2020, International Journal of Advanced Robotic Systems.

[52]  Ali-akbar Agha-mohammadi,et al.  Perception‐aware autonomous mast motion planning for planetary exploration rovers , 2019, J. Field Robotics.

[53]  L. Carlone,et al.  Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection , 2019, IEEE Robotics and Automation Letters.

[54]  Jen Jen Chung,et al.  Informative Path Planning for Active Field Mapping under Localization Uncertainty , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[55]  Chen Wang,et al.  A Survey on Visual Navigation for Artificial Agents With Deep Reinforcement Learning , 2020, IEEE Access.

[56]  Narcís Palomeras,et al.  Active SLAM for Autonomous Underwater Exploration , 2019, Remote. Sens..

[57]  Roland Siegwart,et al.  Predicting Unobserved Space for Planning via Depth Map Augmentation , 2019, 2019 19th International Conference on Advanced Robotics (ICAR).

[58]  George J. Pappas,et al.  Maximum Information Bounds for Planning Active Sensing Trajectories , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[59]  Clara Gomez,et al.  Topological Frontier-Based Exploration and Map-Building Using Semantic Information , 2019, Sensors.

[60]  Silvio Savarese,et al.  3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[61]  Kurt Geihs,et al.  Long-Horizon Active SLAM system for multi-agent coordinated exploration , 2019, 2019 European Conference on Mobile Robots (ECMR).

[62]  Sertac Karaman,et al.  Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness , 2019, 2019 American Control Conference (ACC).

[63]  George J. Pappas,et al.  Asymptotically Optimal Planning for Non-Myopic Multi-Robot Information Gathering , 2019, Robotics: Science and Systems.

[64]  Matthias Nießner,et al.  Active Scene Understanding via Online Semantic Reconstruction , 2019, Comput. Graph. Forum.

[65]  Michael Goesele,et al.  The Replica Dataset: A Digital Replica of Indoor Spaces , 2019, ArXiv.

[66]  Vadim Indelman,et al.  General-purpose incremental covariance update and efficient belief space planning via a factor-graph propagation action tree , 2019, Int. J. Robotics Res..

[67]  Frank Ferrie,et al.  Active Vision in the Era of Convolutional Neural Networks , 2019, 2019 16th Conference on Computer and Robot Vision (CRV).

[68]  Ping Tan,et al.  Learned Map Prediction for Enhanced Mobile Robot Exploration , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[69]  Andrea Cavallaro,et al.  Learning Action Representations for Self-supervised Visual Exploration , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[70]  Michael Kaess,et al.  MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[71]  Jitendra Malik,et al.  Habitat: A Platform for Embodied AI Research , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[72]  Eduard Vidal,et al.  Autonomous Exploration of Complex Underwater Environments Using a Probabilistic Next-Best-View Planner , 2019, IEEE Robotics and Automation Letters.

[73]  Liam Paull,et al.  Deep Active Localization , 2019, IEEE Robotics and Automation Letters.

[74]  Vadim Indelman,et al.  Topological Information-Theoretic Belief Space Planning with Optimality Guarantees , 2019, ArXiv.

[75]  Roland Siegwart,et al.  Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery , 2019, IEEE Robotics and Automation Letters.

[76]  Fredrik Heintz,et al.  Efficient Autonomous Exploration Planning of Large-Scale 3-D Environments , 2019, IEEE Robotics and Automation Letters.

[77]  Huei-Yung Lin,et al.  Autonomous Mobile Robot Exploration in Unknown Indoor Environments Based on Rapidly-exploring Random Tree , 2019, 2019 IEEE International Conference on Industrial Technology (ICIT).

[78]  Luca Carlone,et al.  Attention and Anticipation in Fast Visual-Inertial Navigation , 2019, IEEE Transactions on Robotics.

[79]  Gaurav S. Sukhatme,et al.  Reliable Graphs for SLAM , 2019, Int. J. Robotics Res..

[80]  Zendai Kashino,et al.  Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments , 2019, IEEE Robotics and Automation Letters.

[81]  Gamini Dissanayake,et al.  Linear SLAM: Linearising the SLAM Problems using Submap Joining , 2019, Autom..

[82]  Michael Milford,et al.  QuadricSLAM: Dual Quadrics From Object Detections as Landmarks in Object-Oriented SLAM , 2018, IEEE Robotics and Automation Letters.

[83]  Brendan Englot,et al.  Self-Learning Exploration and Mapping for Mobile Robots via Deep Reinforcement Learning , 2019, AIAA Scitech 2019 Forum.

[84]  Zheng Fang,et al.  Sample-Based Frontier Detection for Autonomous Robot Exploration , 2018, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[85]  Stefan Leutenegger,et al.  Fusion++: Volumetric Object-Level SLAM , 2018, 2018 International Conference on 3D Vision (3DV).

[86]  Jana Kosecka,et al.  Active Vision Dataset Benchmark , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[87]  Max Q.-H. Meng,et al.  Deep Reinforcement Learning Supervised Autonomous Exploration in Office Environments , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[88]  José A. Castellanos,et al.  On the Importance of Uncertainty Representation in Active SLAM , 2018, IEEE Transactions on Robotics.

[89]  Wolfram Burgard,et al.  Curiosity-driven Exploration for Mapless Navigation with Deep Reinforcement Learning , 2018, ArXiv.

[90]  Shashank Pathak,et al.  A unified framework for data association aware robust belief space planning and perception , 2018, Int. J. Robotics Res..

[91]  Muhamad Risqi U. Saputra,et al.  Visual SLAM and Structure from Motion in Dynamic Environments , 2018, ACM Comput. Surv..

[92]  Vijay Kumar,et al.  Autonomous robotic exploration using a utility function based on Rényi’s general theory of entropy , 2017, Autonomous Robots.

[93]  Vadim Indelman,et al.  Cooperative multi-robot belief space planning for autonomous navigation in unknown environments , 2017, Autonomous Robots.

[94]  Ruslan Salakhutdinov,et al.  Active Neural Localization , 2018, ICLR.

[95]  Vijay Kumar,et al.  Anytime Planning for Decentralized Multirobot Active Information Gathering , 2018, IEEE Robotics and Automation Letters.

[96]  Stefan Leutenegger,et al.  Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping , 2018, IEEE Robotics and Automation Letters.

[97]  Sergey Levine,et al.  Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor , 2018, ICML.

[98]  Matthias Nießner,et al.  ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[99]  Tom Schaul,et al.  Rainbow: Combining Improvements in Deep Reinforcement Learning , 2017, AAAI.

[100]  Jaime Valls Miró,et al.  Gaussian processes autonomous mapping and exploration for range-sensing mobile robots , 2016, Autonomous Robots.

[101]  Marija Seder,et al.  Path Planning for Active SLAM Based on the D* Algorithm With Negative Edge Weights , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[102]  Philip M. Dames,et al.  Distributed multi-target search and tracking using the PHD filter , 2017, 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).

[103]  Marc Peter Deisenroth,et al.  Deep Reinforcement Learning: A Brief Survey , 2017, IEEE Signal Processing Magazine.

[104]  Ayoung Kim,et al.  On the uncertainty propagation: Why uncertainty on lie groups preserves monotonicity? , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[105]  Shayok Mukhopadhyay,et al.  Autonomous robotic exploration based on multiple rapidly-exploring randomized trees , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[106]  José A. Castellanos,et al.  TIGRE: Topological graph based robotic exploration , 2017, 2017 European Conference on Mobile Robots (ECMR).

[107]  Vadim Indelman,et al.  No belief propagation required: Belief space planning in high-dimensional state spaces via factor graphs, the matrix determinant lemma, and re-use of calculation , 2017, Int. J. Robotics Res..

[108]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[109]  Charles Richter,et al.  Safe Visual Navigation via Deep Learning and Novelty Detection , 2017, Robotics: Science and Systems.

[110]  Christos Papachristos,et al.  Uncertainty-aware receding horizon exploration and mapping using aerial robots , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[111]  Sean L. Bowman,et al.  Probabilistic data association for semantic SLAM , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[112]  Simone Frintrop,et al.  Multi-robot active information gathering with periodic communication , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[113]  Ming Liu,et al.  Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[114]  David Hsu,et al.  QMDP-Net: Deep Learning for Planning under Partial Observability , 2017, NIPS.

[115]  Razvan Pascanu,et al.  Learning to Navigate in Complex Environments , 2016, ICLR.

[116]  Roland Siegwart,et al.  Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[117]  Ming Liu,et al.  Mobile robots exploration through cnn-based reinforcement learning , 2016, Robotics and biomimetics.

[118]  Shane Legg,et al.  DeepMind Lab , 2016, ArXiv.

[119]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[120]  Jan Faigl,et al.  Multi-robot path planning for budgeted active perception with self-organising maps , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[121]  Mac Schwager,et al.  Rapidly Exploring Random Cycles: Persistent Estimation of Spatiotemporal Fields With Multiple Sensing Robots , 2016, IEEE Transactions on Robotics.

[122]  Danwei Wang,et al.  Towards autonomous 3D exploration using surface frontiers , 2016, 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[123]  Vadim Indelman,et al.  Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[124]  Alejandro Hernández Cordero,et al.  Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo , 2016, ArXiv.

[125]  Tom Schaul,et al.  Unifying Count-Based Exploration and Intrinsic Motivation , 2016, NIPS.

[126]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[127]  Roland Siegwart,et al.  Receding Horizon "Next-Best-View" Planner for 3D Exploration , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[128]  Wenzhe Li,et al.  Room segmentation: Survey, implementation, and analysis , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[129]  Filip De Turck,et al.  VIME: Variational Information Maximizing Exploration , 2016, NIPS.

[130]  Luiz Chaimowicz,et al.  The next frontier: combining information gain and distance cost for decentralized multi-robot exploration , 2016, SAC.

[131]  Nathan Michael,et al.  Incremental Distributed Inference from Arbitrary Poses and Unknown Data Association: Using Collaborating Robots to Establish a Common Reference , 2016, IEEE Control Systems.

[132]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[133]  Vadim Indelman No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space , 2016, IEEE Robotics and Automation Letters.

[134]  Tom Schaul,et al.  Prioritized Experience Replay , 2015, ICLR.

[135]  Liam Paull,et al.  Information-based Active SLAM via topological feature graphs , 2015, 2016 IEEE 55th Conference on Decision and Control (CDC).

[136]  David Silver,et al.  Deep Reinforcement Learning with Double Q-Learning , 2015, AAAI.

[137]  Yuval Tassa,et al.  Continuous control with deep reinforcement learning , 2015, ICLR.

[138]  Daniele Nardi,et al.  Robots for Exploration, Digital Preservation and Visualization of Archeological Sites , 2016 .

[139]  Cheng Zhu,et al.  A 3D Frontier-Based Exploration Tool for MAVs , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).

[140]  Siddhartha S. Srinivasa,et al.  Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model Set , 2015, IEEE Robotics & Automation Magazine.

[141]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[142]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[143]  Vijay Kumar,et al.  Information-Theoretic Planning with Trajectory Optimization for Dense 3D Mapping , 2015, Robotics: Science and Systems.

[144]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[145]  Frank Dellaert,et al.  Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments , 2015, Int. J. Robotics Res..

[146]  Yasir Latif,et al.  On the monotonicity of optimality criteria during exploration in active SLAM , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[147]  George J. Pappas,et al.  Decentralized active information acquisition: Theory and application to multi-robot SLAM , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[148]  Ryan M. Eustice,et al.  Active visual SLAM for robotic area coverage: Theory and experiment , 2015, Int. J. Robotics Res..

[149]  Dinko Osmankovic,et al.  Active SLAM-based algorithm for autonomous exploration with mobile robot , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).

[150]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[151]  Charles Richter,et al.  Bayesian Learning for Safe High-Speed Navigation in Unknown Environments , 2015, ISRR.

[152]  Gamini Dissanayake,et al.  Novel insights into the impact of graph structure on SLAM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[153]  Juan Andrade-Cetto,et al.  Dense entropy decrease estimation for mobile robot exploration , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[154]  Daniel Lyons,et al.  Uncertainty-constrained robot exploration: A mixed-integer linear programming approach , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[155]  Horst Bischof,et al.  Active monocular localization: Towards autonomous monocular exploration for multirotor MAVs , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[156]  Basilio Bona,et al.  Active SLAM and Exploration with Particle Filters Using Kullback-Leibler Divergence , 2014, J. Intell. Robotic Syst..

[157]  Geoffrey A. Hollinger,et al.  Sampling-based robotic information gathering algorithms , 2014, Int. J. Robotics Res..

[158]  George J. Pappas,et al.  Nonmyopic View Planning for Active Object Classification and Pose Estimation , 2014, IEEE Transactions on Robotics.

[159]  Gal A. Kaminka,et al.  Efficient frontier detection for robot exploration , 2014, Int. J. Robotics Res..

[160]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[161]  George J. Pappas,et al.  Information acquisition with sensing robots: Algorithms and error bounds , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[162]  Vijay Kumar,et al.  Approximate representations for multi-robot control policies that maximize mutual information , 2014, Robotics: Science and Systems.

[163]  Jonathan P. How,et al.  Sensor Selection in High-Dimensional Gaussian Trees with Nuisances , 2013, NIPS.

[164]  Juan Andrade-Cetto,et al.  Planning Reliable Paths With Pose SLAM , 2013, IEEE Transactions on Robotics.

[165]  David Hsu,et al.  Integrated perception and planning in the continuous space: A POMDP approach , 2013, Int. J. Robotics Res..

[166]  Evangelos Theodorou,et al.  Multi-robot active SLAM with relative entropy optimization , 2013, 2013 American Control Conference.

[167]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[168]  Surya P. N. Singh,et al.  V-REP: A versatile and scalable robot simulation framework , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[169]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[170]  Jaime Valls Miró,et al.  Active Pose SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[171]  Ron Alterovitz,et al.  Motion planning under uncertainty using iterative local optimization in belief space , 2012, Int. J. Robotics Res..

[172]  Ron Alterovitz,et al.  Efficient Approximate Value Iteration for Continuous Gaussian POMDPs , 2012, AAAI.

[173]  Gal A. Kaminka,et al.  Robot exploration with fast frontier detection: theory and experiments , 2012, AAMAS.

[174]  Arturo Gil,et al.  A comparison of path planning strategies for autonomous exploration and mapping of unknown environments , 2012, Auton. Robots.

[175]  Ian D. Reid,et al.  On the comparison of uncertainty criteria for active SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[176]  Niko Sünderhauf,et al.  Towards a robust back-end for pose graph SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[177]  Alexander Kleiner,et al.  A frontier-void-based approach for autonomous exploration in 3d , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[178]  Jingjing Du,et al.  A comparative study on active SLAM and autonomous exploration with Particle Filters , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[179]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[180]  Kurt Konolige,et al.  g 2 o: A general Framework for (Hyper) Graph Optimization , 2011 .

[181]  Olivier Buffet,et al.  A POMDP Extension with Belief-dependent Rewards , 2010, NIPS.

[182]  Robert Eidenberger,et al.  Active perception and scene modeling by planning with probabilistic 6D object poses , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[183]  Leslie Pack Kaelbling,et al.  Belief space planning assuming maximum likelihood observations , 2010, Robotics: Science and Systems.

[184]  Sven Behnke,et al.  Evaluating the Efficiency of Frontier-based Exploration Strategies , 2010, ISR/ROBOTIK.

[185]  Juan Andrade-Cetto,et al.  Information-Based Compact Pose SLAM , 2010, IEEE Transactions on Robotics.

[186]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[187]  George J. Pappas,et al.  On trajectory optimization for active sensing in Gaussian process models , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[188]  N. Roy,et al.  The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance , 2009, Int. J. Robotics Res..

[189]  Cyrill Stachniss,et al.  Robotic Mapping and Exploration , 2009, Springer Tracts in Advanced Robotics.

[190]  David Wettergreen,et al.  Active SLAM and Loop Prediction with the Segmented Map Using Simplified Models , 2009, FSR.

[191]  Groupe Pdmia Markov Decision Processes In Artificial Intelligence , 2009 .

[192]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[193]  Gamini Dissanayake,et al.  Active SLAM in structured environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[194]  Franz S. Hover,et al.  SLAM for ship hull inspection using exactly sparse extended information filters , 2008, 2008 IEEE International Conference on Robotics and Automation.

[195]  Javier González,et al.  A Novel Measure of Uncertainty for Mobile Robot SLAM with Rao—Blackwellized Particle Filters , 2008, Int. J. Robotics Res..

[196]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[197]  Gamini Dissanayake,et al.  Active SLAM using Model Predictive Control and Attractor based Exploration , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[198]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[199]  Nancy M. Amato,et al.  Planning motion in completely deformable environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[200]  Rafael Murrieta-Cid,et al.  Planning exploration strategies for simultaneous localization and mapping , 2006, Robotics Auton. Syst..

[201]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[202]  Angel P. del Pobil,et al.  Benchmarks in Robotics Research , 2006 .

[203]  Andrew J. Davison,et al.  Active search for real-time vision , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[204]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[205]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[206]  Nikos A. Vlassis,et al.  Robot Planning in Partially Observable Continuous Domains , 2005, BNAIC.

[207]  Wolfram Burgard,et al.  Coordinated multi-robot exploration , 2005, IEEE Transactions on Robotics.

[208]  Giuseppe Oriolo,et al.  Frontier-Based Probabilistic Strategies for Sensor-Based Exploration , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[209]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[210]  Mark H. Overmars,et al.  Roadmap-based motion planning in dynamic environments , 2004, IEEE Transactions on Robotics.

[211]  Wolfram Burgard,et al.  Exploration with active loop-closing for FastSLAM , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[212]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[213]  Marilena Vendittelli,et al.  The SRT method: randomized strategies for exploration , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[214]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[215]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[216]  Wolfram Burgard,et al.  Mapping and exploration with mobile robots using coverage maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[217]  Howie Choset,et al.  Autonomous exploration via regions of interest , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[218]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[219]  Michael Bosse,et al.  Autonomous feature-based exploration , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[220]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: a natural integration of topological and metric , 2003, Robotics Auton. Syst..

[221]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[222]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[223]  Alexei Makarenko,et al.  An experiment in integrated exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[224]  Héctor H. González-Baños,et al.  Navigation Strategies for Exploring Indoor Environments , 2002, Int. J. Robotics Res..

[225]  Joris De Schutter,et al.  A Comparison of Decision Making Criteria and Optimization Methods for Active Robotic Sensing , 2002, Numerical Methods and Application.

[226]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[227]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[228]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[229]  Lydia E. Kavraki,et al.  Deformable volumes in path planning applications , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[230]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[231]  E. Deci,et al.  Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. , 2000, Contemporary educational psychology.

[232]  Richard Pito,et al.  A Solution to the Next Best View Problem for Automated Surface Acquisition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[233]  Anne Condon,et al.  On the Undecidability of Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision Problems , 1999, AAAI/IAAI.

[234]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[235]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[236]  Wolfram Burgard,et al.  Coastal navigation-mobile robot navigation with uncertainty in dynamic environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[237]  Vincenzo Caglioti,et al.  Minimum uncertainty explorations in the self-localization of mobile robots , 1998, IEEE Trans. Robotics Autom..

[238]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[239]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[240]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[241]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[242]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[243]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[244]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[245]  Ruzena Bajcsy,et al.  Occlusions as a Guide for Planning the Next View , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[246]  Sebastian Thrun,et al.  Active Exploration in Dynamic Environments , 1991, NIPS.

[247]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[248]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[249]  R. Bajcsy Active perception , 1988, Proc. IEEE.

[250]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[251]  Peter Kovesi,et al.  Automatic Sensor Placement from Vision Task Requirements , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[252]  C. Ian Connolly,et al.  The determination of next best views , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[253]  Ching-Shui Cheng,et al.  Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum design theory , 1981, J. Comb. Theory B.

[254]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[255]  Karl Johan Åström,et al.  Optimal control of Markov processes with incomplete state information , 1965 .

[256]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[257]  H. K. Nandi On the Efficiency of Experimental Designs , 1951 .

[258]  A. Wald On the Efficient Design of Statistical Investigations , 1943 .