Cloud-based Methods and Architectures for Robot Grasping

The Cloud has the potential to enhance a broad range of robotics and automation systems. Cloud Robotics and Automation systems can be broadly defined as follows: Any robotic or automation system that relies on either data or code from a network to support its operation, i.e., where not all sensing, computation, and memory is integrated into a single standalone system. We identify four potential benefits of Cloud Robotics and Automation: 1) Big Data: access to remote libraries of images, maps, trajectories, and object data, 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning, 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes, and 4) Human computation: using crowdsourcing access to remote human expertise for analyzing images, classification, learning, and error recovery.We present four Cloud Robotics and Automation systems in this dissertation. First, we develop a system for Cloud-based grasping of 2D polygonal objects with uncertainty in shape using an analytic conservative estimate of the probability of force closure. Second, we develop a system for Cloud-based grasping of 2D polygonal objects with uncertainty in pose, using a quasi-static simulation that is less conservative than the approach for the first system. These two systems demonstrate the usefulness of Cloud-based parallelism for handling uncertainty. Third, we develop a system for recognizing and grasping household objects using the Google Object Recognition Engine as a web service and using Cloud storage of object and grasp information. Finally, we develop a system for providing algorithms as web services and integrating datasets with these services. These systems advance the understanding of the benefits the Cloud can provide for Robotics and Automation.

[1]  John F. Canny,et al.  Planning optimal grasps , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[2]  David A. Forsyth,et al.  Utility data annotation with Amazon Mechanical Turk , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[3]  Tao Zhang,et al.  Shape tolerance for robot gripper jaws , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[4]  Ken Goldberg,et al.  Push-Grasp Quality Evaluation for Polygonal Parts under Pose Uncertainty using Quasi-static Simulation , 2014 .

[5]  Gerard T. McKee,et al.  What is networked robotics? , 2006, ICINCO-ICSO.

[6]  Matthew T. Mason,et al.  Posing Polygonal Objects in the Plane by Pushing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  Louis Turnbull,et al.  Cloud robotics: Formation control of a multi robot system utilizing cloud infrastructure , 2013, 2013 Proceedings of IEEE Southeastcon.

[8]  Pieter Abbeel,et al.  Grasping and Fixturing as Submodular Coverage Problems , 2011, ISRR.

[9]  Javier Civera,et al.  C2TAM: A Cloud framework for cooperative tracking and mapping , 2014, Robotics Auton. Syst..

[10]  Li-Chen Fu,et al.  Robust Location-Aware Activity Recognition Using Wireless Sensor Network in an Attentive Home , 2009, IEEE Transactions on Automation Science and Engineering.

[11]  Jayesh K. Gupta,et al.  PlanIt: A crowdsourcing approach for learning to plan paths from large scale preference feedback , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Kenneth Y. Goldberg,et al.  Cloud-based robot grasping with the google object recognition engine , 2013, 2013 IEEE International Conference on Robotics and Automation.

[13]  Luc Van Gool,et al.  Server-side object recognition and client-side object tracking for mobile augmented reality , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[14]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[15]  Raffaello D'Andrea,et al.  Rapyuta: The RoboEarth Cloud Engine , 2013, 2013 IEEE International Conference on Robotics and Automation.

[16]  Kostas E. Bekris,et al.  Cloud Automation: Precomputing Roadmaps for Flexible Manipulation , 2015, IEEE Robotics & Automation Magazine.

[17]  Masayuki Inaba,et al.  Remote-Brained Robots , 1997, IJCAI.

[18]  Joshua R. Smith,et al.  A unified framework for grasping and shape acquisition via pretouch sensing , 2013, 2013 IEEE International Conference on Robotics and Automation.

[19]  Kaijen Hsiao,et al.  A Side of Data With My Robot , 2011, IEEE Robotics & Automation Magazine.

[20]  Radu Bogdan Rusu From Partial to Complete Models , 2013 .

[21]  Florent Lamiraux,et al.  Manipulation of documented objects by a walking humanoid robot , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[22]  Ziyuan Liu,et al.  Grasping on the move: A generic arm-base coordinated grasping pipeline for mobile manipulation , 2013, 2013 European Conference on Mobile Robots.

[23]  Mohamed S. Kamel,et al.  An experimental approach to robotic grasping using a connectionist architecture and generic grasping functions , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[24]  A. Frank van der Stappen,et al.  Computing All Immobilizing Grasps of a Simple Polygon with Few Contacts , 2006, Algorithmica.

[25]  Jean-Jacques Lesage,et al.  Analytic Calculus of Response Time in Networked Automation Systems , 2010, IEEE Transactions on Automation Science and Engineering.

[26]  Matthew Thomas Mason,et al.  Manipulator grasping and pushing operations , 1982 .

[27]  Kostas E. Bekris,et al.  Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning , 2014, WAFR.

[28]  Rolf H. Weber,et al.  Internet of Things - New security and privacy challenges , 2010, Comput. Law Secur. Rev..

[29]  Gabriela Csurka,et al.  Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost , 2012, ECCV.

[30]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[31]  Neil Gershenfeld,et al.  FAB: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication , 2005 .

[32]  Yutaka Hirano,et al.  Image-based object recognition and dexterous hand/arm motion planning using RRTs for grasping in cluttered scene , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Roland Siegwart,et al.  Beyond Webcams: An Introduction to Online Robots , 2001 .

[34]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[35]  B. Bhargava,et al.  A Mobile-Cloud Pedestrian Crossing Guide for the Blind , 2011 .

[36]  Raúl Suárez,et al.  Efficient Determination of Four-Point Form-Closure Optimal Constraints of Polygonal Objects , 2009, IEEE Transactions on Automation Science and Engineering.

[37]  L. Kaelbling,et al.  Simultaneous Localization and Grasping as a Belief Space Control Problem , 2011 .

[38]  Moritz Tenorth,et al.  KnowRob: A knowledge processing infrastructure for cognition-enabled robots , 2013, Int. J. Robotics Res..

[39]  Stefan Parkvall,et al.  LTE: the evolution of mobile broadband , 2009, IEEE Communications Magazine.

[40]  Raouf Boutaba,et al.  Cloud computing: state-of-the-art and research challenges , 2010, Journal of Internet Services and Applications.

[41]  Robert D. Howe,et al.  The SDM Hand: A Highly Adaptive Compliant Grasper for Unstructured Environments , 2008, ISER.

[42]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[43]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[44]  Rüdiger Dillmann,et al.  The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics , 2012, Int. J. Robotics Res..

[45]  Pieter Abbeel,et al.  Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization , 2013, Robotics: Science and Systems.

[46]  Leila Takayama,et al.  Strategies for human-in-the-loop robotic grasping , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[47]  Peter K. Allen,et al.  Pose error robust grasping from contact wrench space metrics , 2012, 2012 IEEE International Conference on Robotics and Automation.

[48]  Ashutosh Saxena,et al.  Robotic Grasping of Novel Objects using Vision , 2008, Int. J. Robotics Res..

[49]  Danica Kragic,et al.  Enhanced visual scene understanding through human-robot dialog , 2010, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Liam O'Brien,et al.  Evaluation of Commercial Cloud Services : A Systematic Literature Review , 2018 .

[51]  Moritz Tenorth,et al.  Representation and Exchange of Knowledge About Actions, Objects, and Environments in the RoboEarth Framework , 2013, IEEE Transactions on Automation Science and Engineering.

[52]  Andrea Torsello,et al.  A Scale Independent Selection Process for 3D Object Recognition in Cluttered Scenes , 2013, International Journal of Computer Vision.

[53]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[54]  Peter K. Allen,et al.  Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Sébastien Gérard,et al.  Towards a core ontology for robotics and automation , 2013, Robotics Auton. Syst..

[56]  Kostas E. Bekris,et al.  OOPS for Motion Planning: An Online, Open-source, Programming System , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[57]  Cong Wang,et al.  Security Challenges for the Public Cloud , 2012, IEEE Internet Computing.

[58]  Dmitry Berenson,et al.  Toward cloud-based grasping with uncertainty in shape: Estimating lower bounds on achieving force closure with zero-slip push grasps , 2012, 2012 IEEE International Conference on Robotics and Automation.

[59]  Nak Young Chong,et al.  Networked Telerobots , 2008, Springer Handbook of Robotics.

[60]  Paul F. Jacobs,et al.  Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography , 1992 .

[61]  Raffaello D'Andrea,et al.  Guest editorial: A revolution in the warehouse: a retrospective on Kiva Systems and the grand challenges ahead , 2012, IEEE Trans Autom. Sci. Eng..

[62]  Yinong Chen,et al.  Design of a Robot Cloud Center , 2011, 2011 Tenth International Symposium on Autonomous Decentralized Systems.

[63]  Liam O'Brien,et al.  On the Conceptualization of Performance Evaluation of IaaS Services , 2014, IEEE Transactions on Services Computing.

[64]  Matei T. Ciocarlie,et al.  The Columbia grasp database , 2009, 2009 IEEE International Conference on Robotics and Automation.

[65]  Dieter Fox,et al.  RGB-D Object Recognition: Features, Algorithms, and a Large Scale Benchmark , 2013, Consumer Depth Cameras for Computer Vision.

[66]  James J. Kuffner,et al.  Physically Based Grasp Quality Evaluation Under Pose Uncertainty , 2013, IEEE Transactions on Robotics.

[67]  Xiaojun Wu,et al.  DAvinCi: A cloud computing framework for service robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[68]  Peter K. Allen,et al.  Learning grasp stability , 2012, 2012 IEEE International Conference on Robotics and Automation.

[69]  Antonio Marín-Hernández,et al.  Learning from the Web: Recognition method based on object appearance from Internet images , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[70]  Matei T. Ciocarlie,et al.  Hand Posture Subspaces for Dexterous Robotic Grasping , 2009, Int. J. Robotics Res..

[71]  Scott Davidson,et al.  Open-source hardware , 2004, IEEE Des. Test Comput..

[72]  Daniel Cohen-Or,et al.  Micro perceptual human computation for visual tasks , 2012, TOGS.

[73]  Nicholas Roy,et al.  Probabilistic Models of Object Geometry for Grasp Planning , 2008, Robotics: Science and Systems.

[74]  Florian T. Pokorny,et al.  Budgeted Multi-Armed Bandit Models for Sample-Based Grasp Planning in the Presence of Uncertainty , 2014 .

[75]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[76]  Blake Hannaford,et al.  Raven-II: An Open Platform for Surgical Robotics Research , 2013, IEEE Transactions on Biomedical Engineering.

[77]  Peter K. Allen,et al.  Stable grasping under pose uncertainty using tactile feedback , 2014, Auton. Robots.

[78]  Andrew A. Proia,et al.  Consumer Cloud Robotics and the Fair Information Practice Principles: Recognizing the Challenges and Opportunities Ahead , 2015 .

[79]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[80]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[81]  Gregory Dudek,et al.  Socially-Driven Collective Path Planning for Robot Missions , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[82]  John M. Hsu,et al.  Inside the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response , 2015, IEEE Transactions on Automation Science and Engineering.

[83]  Nitesh Kumar Jangid,et al.  Real Time Cloud Computing , 2011 .

[84]  Avinash C. Kak,et al.  Fast construction of force-closure grasps , 1996, IEEE Trans. Robotics Autom..

[85]  Matei T. Ciocarlie,et al.  Towards Reliable Grasping and Manipulation in Household Environments , 2010, ISER.

[86]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[87]  Kenneth Y. Goldberg,et al.  Collaborative control of robot motion: robustness to error , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[88]  Guoqiang Hu,et al.  Cloud robotics: architecture, challenges and applications , 2012, IEEE Network.

[89]  James D. Herbsleb,et al.  Social coding in GitHub: transparency and collaboration in an open software repository , 2012, CSCW.

[90]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[91]  Matei T. Ciocarlie,et al.  Collaborative grasp planning with multiple object representations , 2011, 2011 IEEE International Conference on Robotics and Automation.

[92]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[93]  Pieter Abbeel,et al.  Image Object Label 3 D CAD Model Candidate Grasps Google Object Recognition Engine Google Cloud Storage Select Feasible Grasp with Highest Success Probability Pose EstimationCamera Robots Cloud 3 D Sensor , 2014 .

[94]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[95]  Kenneth Y. Goldberg,et al.  Desktop teleoperation via the World Wide Web , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[96]  Shuichi Nishio,et al.  Cloud networked robotics , 2012, IEEE Network.

[97]  Alexandre M. Bayen,et al.  Scaling the mobile millennium system in the cloud , 2011, SoCC.

[98]  Susan M. Haack,et al.  Robot Ethics: The Ethical and Social Implications of Robotics , 2016 .

[99]  Mark H. Overmars,et al.  to the author , 1994 .

[100]  Benjamin B. Bederson,et al.  Human computation: a survey and taxonomy of a growing field , 2011, CHI.

[101]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[102]  Richard Wolski,et al.  The Eucalyptus Open-Source Cloud-Computing System , 2009, 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.

[103]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[104]  Dmitry Berenson,et al.  Estimating part tolerance bounds based on adaptive Cloud-based grasp planning with slip , 2012, 2012 IEEE International Conference on Automation Science and Engineering (CASE).

[105]  Kenneth Y. Goldberg,et al.  Cloud-Based Grasp Analysis and Planning for Toleranced Parts Using Parallelized Monte Carlo Sampling , 2015, IEEE Transactions on Automation Science and Engineering.

[106]  Ken Goldberg,et al.  Beyond the Web: Excavating the Real World via Mosaic , 1994 .

[107]  J. David Irwin,et al.  The industrial electronics handbook , 1997 .

[108]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[109]  Moritz Tenorth,et al.  The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[110]  Ville Kyrki,et al.  Towards informative sensor-based grasp planning , 2014, Robotics Auton. Syst..

[111]  Kevin M. Lynch,et al.  The mechanics of fine manipulation by pushing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[112]  Moritz Tenorth,et al.  RoboEarth - A World Wide Web for Robots , 2011, ICRA 2011.

[113]  Alberto Rodriguez,et al.  From caging to grasping , 2011, Int. J. Robotics Res..

[114]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[115]  Siddhartha S. Srinivasa,et al.  Addressing pose uncertainty in manipulation planning using Task Space Regions , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[116]  Matei T. Ciocarlie,et al.  GP-GPIS-OPT: Grasp planning with shape uncertainty using Gaussian process implicit surfaces and Sequential Convex Programming , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[117]  Hod Lipson,et al.  Fabricated: The New World of 3D Printing , 2013 .

[118]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[119]  Fernando Díaz del Río,et al.  A Tradeoff Analysis of a Cloud-Based Robot Navigation Assistant Using Stereo Image Processing , 2015, IEEE Transactions on Automation Science and Engineering.

[120]  Gabriel L. Oliveira,et al.  View Planning For Cloud-Based Active Object Recognition , 2013 .

[121]  R. Veldkamp,et al.  Laparoscopic surgery versus open surgery for colon cancer : short-term outcomes of a randomised trial , 2022 .

[122]  Manuela M. Veloso,et al.  Using the Web to Interactively Learn to Find Objects , 2012, AAAI.

[123]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[124]  Lei Xing,et al.  Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure , 2011, Physics in medicine and biology.

[125]  Vijay Kumar,et al.  The GRASP Multiple Micro-UAV Testbed , 2010, IEEE Robotics & Automation Magazine.

[126]  Kenneth Y. Goldberg,et al.  Computing parallel-jaw grips , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[127]  Siddhartha S. Srinivasa,et al.  Physics-Based Grasp Planning Through Clutter , 2012, Robotics: Science and Systems.

[128]  Erik Blasch,et al.  A Holistic Cloud-Enabled Robotics System for Real-Time Video Tracking Application , 2014 .

[129]  Van-Due Nguyen,et al.  Constructing stable force-closure grasps , 1986 .

[130]  Moritz Tenorth,et al.  RoboEarth Web-Enabled and Knowledge-Based Active Perception , 2013 .

[131]  Paul R. Schrater,et al.  Handling shape and contact location uncertainty in grasping two-dimensional planar objects , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[132]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[133]  Vijay Kumar,et al.  Opportunities and challenges with autonomous micro aerial vehicles , 2012, Int. J. Robotics Res..

[134]  A. Frank van der Stappen,et al.  Output-Sensitive Computation of Force-Closure Grasps of a Semi-Algebraic Object , 2011, IEEE Transactions on Automation Science and Engineering.

[135]  Gabriel Antoniu,et al.  A performance evaluation of Azure and Nimbus clouds for scientific applications , 2012, CloudCP '12.

[136]  Dmitry Berenson,et al.  A robot path planning framework that learns from experience , 2012, 2012 IEEE International Conference on Robotics and Automation.

[137]  Anders Robertsson,et al.  On Distributed Knowledge Bases for Small-Batch Assembly , 2013, IROS 2013.

[138]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[139]  S. Srinivasa,et al.  Push-grasping with dexterous hands: Mechanics and a method , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[140]  Ken Goldberg,et al.  Cloud Robotics and Automation: A Survey of Related Work , 2013 .

[141]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[142]  Mayank Singh,et al.  Cloud-Based Collaborative 3D Mapping in Real-Time With Low-Cost Robots , 2015, IEEE Transactions on Automation Science and Engineering.

[143]  Josep M. Porta,et al.  Synthesizing grasp configurations with specified contact regions , 2011, Int. J. Robotics Res..

[144]  Javier Felip,et al.  Robust sensor-based grasp primitive for a three-finger robot hand , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[145]  Leslie Pack Kaelbling,et al.  Grasping POMDPs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[146]  Jimmy A. Jørgensen,et al.  Grasping unknown objects using an Early Cognitive Vision system for general scene understanding , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[147]  Deitel Operating System , 2008 .

[148]  Roy T. Fielding,et al.  Principled design of the modern Web architecture , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[149]  B. Mishra Robotics,et al.  Grasp Metrics: Optimality and Complexity , 1995 .

[150]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[151]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[152]  Rupak Biswas,et al.  Performance evaluation of Amazon EC2 for NASA HPC applications , 2012, ScienceCloud '12.

[153]  Randy C. Brost,et al.  Automatic Grasp Planning in the Presence of Uncertainty , 1988, Int. J. Robotics Res..

[154]  Kostas E. Bekris,et al.  Sampling-based roadmap of trees for parallel motion planning , 2005, IEEE Transactions on Robotics.

[155]  Jean-Jacques Lesage,et al.  Client-Server Networked Automation Systems Reactivity: Deterministic and Probabilistic Analysis , 2011, IEEE Transactions on Automation Science and Engineering.

[156]  Pieter Abbeel,et al.  Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression , 2014, 2014 IEEE International Conference on Automation Science and Engineering (CASE).

[157]  Honglak Lee,et al.  Deep learning for detecting robotic grasps , 2013, Int. J. Robotics Res..

[158]  Sir Ara W Darzi,et al.  The impact of minimally invasive surgical techniques. , 2004, Annual review of medicine.

[159]  Kristen Grauman,et al.  Large-scale live active learning: Training object detectors with crawled data and crowds , 2011, CVPR.

[160]  Raffaello D'Andrea,et al.  Rapyuta: A Cloud Robotics Platform , 2015, IEEE Transactions on Automation Science and Engineering.

[161]  Siddhartha S. Srinivasa,et al.  People helping robots helping people: Crowdsourcing for grasping novel objects , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[162]  Alexander Hars,et al.  Working for free? Motivations of participating in open source projects , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.

[163]  Oussama Khatib,et al.  Grasping with application to an autonomous checkout robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[164]  Shinji Kanda,et al.  Reliable cloud-based robot services , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[165]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[166]  Leslie Pack Kaelbling,et al.  Robust grasping under object pose uncertainty , 2011, Auton. Robots.

[167]  Jian Dong,et al.  Contextualizing Object Detection and Classification , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[168]  Siddhartha S. Srinivasa,et al.  Object recognition and full pose registration from a single image for robotic manipulation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[169]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[170]  Kostas E. Bekris,et al.  Sparse Roadmap Spanners , 2012, WAFR.

[171]  Santosh Krishnan,et al.  Google Compute Engine , 2015 .

[172]  Arthur C. Sanderson,et al.  Planning robotic manipulation strategies for sliding objects , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[173]  P. Abbeel,et al.  LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information , 2011 .

[174]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[175]  Max Q.-H. Meng,et al.  Real-Time Multisensor Data Retrieval for Cloud Robotic Systems , 2015, IEEE Transactions on Automation Science and Engineering.

[176]  M. Sevior,et al.  Belle Monte-Carlo Production on the Amazon EC2 Cloud , 2010 .

[177]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[178]  Lino Marques,et al.  Computation Sharing in Distributed Robotic Systems: A Case Study on SLAM , 2015, IEEE Transactions on Automation Science and Engineering.

[179]  Katsushi Ikeuchi,et al.  Generating an interpretation tree from a CAD model for 3D-object recognition in bin-picking tasks , 1987, International Journal of Computer Vision.

[180]  Danica Kragic,et al.  Grasping known objects with humanoid robots: A box-based approach , 2009, 2009 International Conference on Advanced Robotics.

[181]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[182]  Peter K. Allen,et al.  Data-driven grasping , 2011, Auton. Robots.

[183]  Van-Duc Nguyen,et al.  Constructing Stable Grasps , 1989, Int. J. Robotics Res..

[184]  G. Bruce Berriman,et al.  An Evaluation of the Cost and Performance of Scientific Workflows on Amazon EC2 , 2012, Journal of Grid Computing.

[185]  Tim Kraska,et al.  A sample-and-clean framework for fast and accurate query processing on dirty data , 2014, SIGMOD Conference.

[186]  L. Joskowicz,et al.  Efficient representation and computation of geometric uncertainty: The linear parametric model , 2010 .