Control of Motion and Compliance

Abstract This chapter reviews different methods for the control of legged locomotion with a special focus on bipedal locomotion. All locomotion systems are governed by complex nonlinear, hybrid dynamics, and are redundant, underactuated and often unstable, which makes their control a very challenging task. The chapter starts with a presentation of different concepts of stability and robustness of locomotion considering nominal walking situations as well as the reaction to larger external perturbations. Then, optimal control is discussed as a guiding principle of human and robot motion, and dynamic multibody system models as well as different optimization problem formulations for the generation, control and analysis of locomotion are shown. Constant or variable compliance plays an important role in biological and bio-inspired locomotion, but needs to be properly adapted in the design and control process which also can be addressed by optimal control. Next, impedance control in locomotion is discussed, looking at passive and active impedance and different approaches to emulated appropriate impedances for robots. The chapter also reviews control approaches for legged locomotion based on template models, i.e. very simple representations of the original locomotor system, with a focus using template models for the design of suitable controllers. The state of the art of passive dynamic walking robots as well as powered and almost passive dynamic robots is summarized and their achievements in terms of energy-efficiency, stability, robustness and versatility re discussed. Hybrid zero dynamics is presented as a control synthesis framework that reduces the complexity of whole-body dynamics control and allows to develop efficient controllers for dynamic walking and running motions. Finally, a control approach for locomotion based on the concept of central pattern generators is presented which helps to control locomotion of legged robots and gives insight into human movement control.

[1]  Ruzena Bajcsy,et al.  Human-data based cost of bipedal robotic walking , 2011, HSCC '11.

[2]  Christine Chevallereau,et al.  Models, feedback control, and open problems of 3D bipedal robotic walking , 2014, Autom..

[3]  Darwin G. Caldwell,et al.  RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on Domain Specific Languages , 2016 .

[4]  A. Ijspeert,et al.  A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape , 2013 .

[5]  Hubert Roth,et al.  Modular Reactive Neurocontrol for Biologically Inspired Walking Machines , 2007, Int. J. Robotics Res..

[6]  Ralph Etienne-Cummings,et al.  CPG Design using Inhibitory Networks , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[8]  Katja D. Mombaur,et al.  Synthesis of full-body 3-D human gait using optimal control methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Aaron D. Ames,et al.  3D multi-contact gait design for prostheses: Hybrid system models, virtual constraints and two-step direct collocation , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[10]  Alain Micaelli,et al.  A new optimization based approach for push recovery in case of multiple noncoplanar contacts , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[11]  Darwin G. Caldwell,et al.  On Global Optimization of Walking Gaits for the Compliant Humanoid Robot, COMAN Using Reinforcement Learning , 2012 .

[12]  J. Abrantes,et al.  Dynamic joint stiffness of the ankle during walking: gender-related differences. , 2008, Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine.

[13]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[14]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Patrick Lacouture,et al.  Improvement of upper extremity kinematics estimation using a subject-specific forearm model implemented in a kinematic chain. , 2013, Journal of biomechanics.

[16]  Stefan Schaal,et al.  Learning variable impedance control , 2011, Int. J. Robotics Res..

[17]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[18]  Alexander Spröwitz,et al.  ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot , 2016, Int. J. Robotics Res..

[19]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[20]  K. Mombaur,et al.  Open‐loop stable solutions of periodic optimal control problems in robotics , 2005 .

[21]  Aaron D. Ames,et al.  Control lyapunov functions and hybrid zero dynamics , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[22]  Kiyotoshi Matsuoka,et al.  Sustained oscillations generated by mutually inhibiting neurons with adaptation , 1985, Biological Cybernetics.

[23]  Christopher Lee,et al.  PETMAN : A Humanoid Robot for Testing Chemical Protective Clothing (特集 2足歩行ロボット技術) , 2012 .

[24]  Steven Dubowsky,et al.  Coordinated Motion and Force Control of Multi-Limbed Robotic Systems , 1999, Auton. Robots.

[25]  P. Beek,et al.  The effects of arm swing on human gait stability , 2010, Journal of Experimental Biology.

[26]  Darwin G. Caldwell,et al.  Dynamic torque control of a hydraulic quadruped robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[27]  Jun Nakanishi,et al.  Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors , 2013, Neural Computation.

[28]  Frédéric Gruau,et al.  Cellular Encoding for interactive evolutionary robotics , 1996 .

[29]  Byoung-Tak Zhang,et al.  Learning full body push recovery control for small humanoid robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[30]  Nikolaos G. Tsagarakis,et al.  The mechatronic design of the new legs of the iCub robot , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[31]  Jonas Buchli,et al.  Learning of closed-loop motion control , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[33]  Stefan Schaal,et al.  Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments , 2012, IEEE Transactions on Autonomous Mental Development.

[34]  Pierre-Brice Wieber,et al.  Viability and predictive control for safe locomotion , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Herman van der Kooij,et al.  Lateral balance control during walking: Foot placement and stability in response to external perturbations , 2012 .

[36]  Jessy W. Grizzle,et al.  The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper , 2009, IEEE Transactions on Automatic Control.

[37]  Nicola Vitiello,et al.  Oscillator-based assistance of cyclical movements: model-based and model-free approaches , 2011, Medical & Biological Engineering & Computing.

[38]  Yasuo Kuniyoshi,et al.  Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[39]  Pranav A. Bhounsule NUMERICAL ACCURACY OF TWO BENCHMARK MODELS OF WALKING: THE RIMLESS SPOKED WHEEL AND THE SIMPLEST WALKER , 2014 .

[40]  Michael Goldfarb,et al.  A controller for dynamic walking in bipedal robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Michael Günther,et al.  Joint stiffness of the ankle and the knee in running. , 2002, Journal of biomechanics.

[42]  Yuan F. Zheng,et al.  DRC-hubo walking on rough terrains , 2014, 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[43]  Sangbae Kim,et al.  Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds , 2015, Robotics: Science and Systems.

[44]  Richard W. Longman,et al.  Open-loop stable running , 2005, Robotica.

[45]  Jörg Conradt,et al.  Distributed Central Pattern Generator Control for a Serpentine Robot , 2003 .

[46]  R. Blickhan,et al.  Spring-mass running: simple approximate solution and application to gait stability. , 2005, Journal of theoretical biology.

[47]  Karsten Berns,et al.  Learning Control of a Six-Legged Walking Machine , 1994 .

[48]  Katie Byl,et al.  Approximation and Control of the SLIP Model Dynamics via Partial Feedback Linearization and Two-Element Leg Actuation Strategy , 2016, IEEE Transactions on Robotics.

[49]  Jessy W. Grizzle,et al.  Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot , 2014 .

[50]  Christopher G. Atkeson,et al.  Dynamic Balance Force Control for compliant humanoid robots , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Jun Morimoto,et al.  Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[52]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[53]  Tamio Arai,et al.  Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control , 2006, Robotics Auton. Syst..

[54]  Auke Jan Ijspeert,et al.  A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander , 2001, Biological Cybernetics.

[55]  Olivier Stasse,et al.  Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[56]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part II—Implementation , 1985 .

[57]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[58]  Yildirim Hurmuzlu,et al.  Dynamics of Bipedal Gait: Part II—Stability Analysis of a Planar Five-Link Biped , 1993 .

[59]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[60]  Jun Morimoto,et al.  Learning CPG-based biped locomotion with a policy gradient method , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[61]  Ioannis Poulakakis,et al.  Spring Loaded Inverted Pendulum embedding: Extensions toward the control of compliant running robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[62]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.

[63]  Arend L. Schwab,et al.  First Steps in Passive Dynamic Walking , 2005 .

[64]  Yuan F. Zheng,et al.  Dynamic walking in a humanoid robot based on a 3D Actuated Dual-SLIP model , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[65]  David E. Schimmel,et al.  A VLSI architecture for modeling intersegmental coordination , 1997, Proceedings Seventeenth Conference on Advanced Research in VLSI.

[66]  Sushant Veer,et al.  Almost driftless navigation of 3D limit-cycle walking bipeds , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[67]  Heike Vallery,et al.  Observing the State of Balance with a Single Upper-Body Sensor , 2016, Front. Robot. AI.

[68]  Aaron D. Ames,et al.  Continuity and smoothness properties of nonlinear optimization-based feedback controllers , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[69]  Mario W. Gomes,et al.  Walking model with no energy cost. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  A. Dollar,et al.  Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking , 2013, PloS one.

[71]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[72]  Aaron D. Ames,et al.  3D dynamic walking with underactuated humanoid robots: A direct collocation framework for optimizing hybrid zero dynamics , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[73]  Koushil Sreenath,et al.  Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL , 2013, Int. J. Robotics Res..

[74]  David E. Orin,et al.  Centroidal dynamics of a humanoid robot , 2013, Auton. Robots.

[75]  Kazuhito Yokoi,et al.  Reactive stepping to prevent falling for humanoids , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[76]  David E. Orin,et al.  Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[77]  Jerry Pratt,et al.  Design of a bipedal walking robot , 2008, SPIE Defense + Commercial Sensing.

[78]  R. Kram,et al.  Mechanical work performed by the individual legs during uphill and downhill walking. , 2012, Journal of biomechanics.

[79]  Paulo Tabuada,et al.  Robustness of Control Barrier Functions for Safety Critical Control , 2016, ADHS.

[80]  Eiichi Yoshida,et al.  On humanoid motion optimization , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[81]  J. Cabelguen,et al.  Bimodal Locomotion Elicited by Electrical Stimulation of the Midbrain in the Salamander Notophthalmus viridescens , 2003, The Journal of Neuroscience.

[82]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[83]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[84]  Frans C. T. van der Helm,et al.  How to keep from falling forward: elementary swing leg action for passive dynamic walkers , 2005, IEEE Transactions on Robotics.

[85]  Marko Ackermann,et al.  Optimality principles for model-based prediction of human gait. , 2010, Journal of biomechanics.

[86]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[87]  Christine Chevallereau,et al.  Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot , 2005, Int. J. Robotics Res..

[88]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[89]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[90]  Albert Wu,et al.  The 3-D Spring–Mass Model Reveals a Time-Based Deadbeat Control for Highly Robust Running and Steering in Uncertain Environments , 2013, IEEE Transactions on Robotics.

[91]  Katja D. Mombaur,et al.  Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[92]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[93]  Katja D. Mombaur,et al.  Using optimization to create self-stable human-like running , 2009, Robotica.

[94]  Johannes P. Schlöder,et al.  Estimating Parameters in Optimal Control Problems , 2012, SIAM J. Sci. Comput..

[95]  Sushant Veer,et al.  Composing limit cycles for motion planning of 3D bipedal walkers , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[96]  Susanne W. Lipfert,et al.  Upright human gait did not provide a major mechanical challenge for our ancestors. , 2010, Nature communications.

[97]  Olivier Stasse,et al.  Optimization based exploitation of the ankle elasticity of HRP-2 for overstepping large obstacles , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[98]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[99]  Shinya Aoi,et al.  Locomotion Control of a Biped Robot Using Nonlinear Oscillators , 2005, Auton. Robots.

[100]  Daniel Koditschek,et al.  Quantifying Dynamic Stability and Maneuverability in Legged Locomotion1 , 2002, Integrative and comparative biology.

[101]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[102]  A. Berthoz,et al.  Head stabilization during various locomotor tasks in humans , 2004, Experimental Brain Research.

[103]  Kai Henning Koch,et al.  Optimization-Based Walking Generation for Humanoid Robot , 2012, SyRoCo.

[104]  Jessy W. Grizzle,et al.  Monopedal running control: SLIP embedding and virtual constraint controllers , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[105]  Florence Billet,et al.  The HuMAnS toolbox, a homogenous framework for motion capture, analysis and simulation , 2006 .

[106]  Richard W. Longman,et al.  Human-like actuated walking that is asymptotically stable without feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[107]  Ian Stavness,et al.  Improved Muscle Wrapping Algorithms Using Explicit Path-Error Jacobians , 2014 .

[108]  Kazuhito Yokoi,et al.  Development of a software for motion optimization of robots - Application to the kick motion of the HRP-2 robot , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[109]  Ruzena Bajcsy,et al.  Persistent homology for automatic determination of human-data based cost of bipedal walking , 2013 .

[110]  Aaron D. Ames,et al.  Speed regulation in 3D robotic walking through motion transitions between Human-Inspired partial hybrid zero dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[111]  A.J. Ijspeert,et al.  Online optimization of modular robot locomotion , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[112]  Jessy W. Grizzle,et al.  Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots , 2009, IEEE Transactions on Automatic Control.

[113]  M. Coleman,et al.  Prediction of stable walking for a toy that cannot stand. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  A L Hof,et al.  The condition for dynamic stability. , 2005, Journal of biomechanics.

[115]  Myunghee Kim,et al.  Once-Per-Step Control of Ankle Push-Off Work Improves Balance in a Three-Dimensional Simulation of Bipedal Walking , 2017, IEEE Transactions on Robotics.

[116]  Yasuhiro Fukuoka,et al.  Adaptive dynamic walking of a quadruped robot using a neural system model , 2001, Adv. Robotics.

[117]  Reinhard Blickhan,et al.  A movement criterion for running. , 2002, Journal of biomechanics.

[118]  A. Karpathy,et al.  Locomotion skills for simulated quadrupeds , 2011, ACM Trans. Graph..

[119]  Hiroshi Shimizu,et al.  Generation and coordination of bipedal locomotion through global entrainment , 1993, Proceedings ISAD 93: International Symposium on Autonomous Decentralized Systems.

[120]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[121]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[122]  Katja D. Mombaur,et al.  Squat motion generation for the humanoid robot iCub with Series Elastic Actuators , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[123]  Ludovic Righetti,et al.  Operational Space Control of Constrained and Underactuated Systems , 2011, Robotics: Science and Systems.

[124]  Aaron D. Ames,et al.  First Steps toward Automatically Generating Bipedal Robotic Walking from Human Data , 2012 .

[125]  Stefan Schaal,et al.  Full Dynamics LQR Control for Bipedal Walking , 2015 .

[126]  Herbert F. Jelinek,et al.  Human balance responses to perturbations in the horizontal plane , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[127]  Aaron D. Ames,et al.  First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach , 2017, Auton. Robots.

[128]  F. Clarac,et al.  Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. , 1992, The Journal of physiology.

[129]  Stefan Ulbrich,et al.  Master Motor Map (MMM) — Framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[130]  Aaron D. Ames,et al.  Realizing underactuated bipedal walking with torque controllers via the ideal model resolved motion method , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[131]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[132]  Reed Ferber,et al.  Reactive balance adjustments to unexpected perturbations during human walking. , 2002, Gait & posture.

[133]  Hannes Sommer,et al.  Policy Learning with an Efficient Black-Box Optimization Algorithm , 2015, Int. J. Humanoid Robotics.

[134]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[135]  Manish Sreenivasa,et al.  Inverse Optimal Control as a Tool to Understand Human Yoyo Playing , 2010 .

[136]  M Simoneau,et al.  Online control of anticipated postural adjustments in step initiation: evidence from behavioral and computational approaches. , 2012, Gait & posture.

[137]  Albert Wu,et al.  Touch-down angle control for spring-mass walking , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[138]  Sushant Veer,et al.  On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[139]  Aaron D. Ames,et al.  Lyapunov Theory for Zeno Stability , 2013, IEEE Transactions on Automatic Control.

[140]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[141]  Alfred A. Rizzi,et al.  Series compliance for an efficient running gait , 2008, IEEE Robotics & Automation Magazine.

[142]  L. Selen,et al.  Impedance Control Reduces Instability That Arises from Motor Noise , 2009, The Journal of Neuroscience.

[143]  Aaron D. Ames,et al.  Quadratic program based nonlinear embedded control of series elastic actuators , 2014, 53rd IEEE Conference on Decision and Control.

[144]  Paulo Tabuada,et al.  Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars , 2015, 2015 American Control Conference (ACC).

[145]  Reinhard Blickhan,et al.  Spring-Legged Locomotion on uneven Ground: A Control Approach to keep the running Speed constant , 2009 .

[146]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[147]  M A Townsend,et al.  Biped gait stabilization via foot placement. , 1985, Journal of biomechanics.

[148]  Auke Jan Ijspeert,et al.  18. Decoding the Mechanisms of Gait Generation and Gait Transition in the Salamander Using Robots and Mathematical Models , 2010 .

[149]  Guy Bessonnet,et al.  Forces acting on a biped robot. Center of pressure-zero moment point , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[150]  David E. Orin,et al.  Terrain-Blind Humanoid Walking Based on a 3-D Actuated Dual-SLIP Model , 2016, IEEE Robotics and Automation Letters.

[151]  Miomir Vukobratovic,et al.  Zmp: a Review of Some Basic Misunderstandings , 2006, Int. J. Humanoid Robotics.

[152]  Jessy W. Grizzle,et al.  A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking , 2013, IEEE Transactions on Robotics.

[153]  Robert Riener,et al.  Kooperative Regelung robotischer Gleichgewichtsunterstützung während des Gehens , 2012 .

[154]  Fumiya Iida,et al.  Bipedal walking and running with spring-like biarticular muscles. , 2008, Journal of biomechanics.

[155]  Aaron D. Ames,et al.  Sufficient conditions for the Lipschitz continuity of QP-based multi-objective control of humanoid robots , 2013, 52nd IEEE Conference on Decision and Control.

[156]  Ludovic Righetti,et al.  Engineering entrainment and adaptation in limit cycle systems , 2006, Biological Cybernetics.

[157]  Darwin G. Caldwell,et al.  A reactive controller framework for quadrupedal locomotion on challenging terrain , 2013, 2013 IEEE International Conference on Robotics and Automation.

[158]  Giorgio Grioli,et al.  Variable Stiffness Actuators: Review on Design and Components , 2016, IEEE/ASME Transactions on Mechatronics.

[159]  Arthur D Kuo,et al.  Energetics of actively powered locomotion using the simplest walking model. , 2002, Journal of biomechanical engineering.

[160]  Katsuhisa Furuta,et al.  Virtual passive dynamic walking and energy-based control laws , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[161]  Ambarish Goswami,et al.  Foot rotation indicator (FRI) point: a new gait planning tool to evaluate postural stability of biped robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[162]  N. G. Tsagarakis,et al.  A compact model for the compliant humanoid robot COMAN , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[163]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[164]  Aaron D. Ames,et al.  Realization of nonlinear real-time optimization based controllers on self-contained transfemoral prosthesis , 2015, ICCPS.

[165]  M. W. Rogers,et al.  A closed-loop stepper motor waist-pull system for inducing protective stepping in humans. , 1998, Journal of biomechanics.

[166]  Kai Henning Koch,et al.  Learning movement primitives from optimal and dynamically feasible trajectories for humanoid walking , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[167]  Jian Huang,et al.  Integrating dynamic walking and arm impedance control for cooperative transportation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[168]  Fumiya Iida,et al.  Finding Resonance: Adaptive Frequency Oscillators for Dynamic Legged Locomotion , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[169]  David E. Orin,et al.  High-speed humanoid running through control with a 3D-SLIP model , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[170]  Andrei Herdt,et al.  Online Walking Motion Generation with Automatic Footstep Placement , 2010, Adv. Robotics.

[171]  Aaron D. Ames,et al.  Preliminary results on energy efficient 3D prosthetic walking with a powered compliant transfemoral prosthesis , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[172]  Jörn Malzahn,et al.  WALK‐MAN: A High‐Performance Humanoid Platform for Realistic Environments , 2017, J. Field Robotics.

[173]  Andy Ruina,et al.  Non-linear robust control for inverted-pendulum 2D walking , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[174]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[175]  Koushil Sreenath,et al.  Torque Saturation in Bipedal Robotic Walking Through Control Lyapunov Function-Based Quadratic Programs , 2013, IEEE Access.

[176]  Alin Albu-Schäffer,et al.  Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion , 2015, IEEE Transactions on Robotics.

[177]  Christopher G. Atkeson,et al.  Push Recovery by stepping for humanoid robots with force controlled joints , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[178]  Darwin G. Caldwell,et al.  Code generation of algebraic quantities for robot controllers , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[179]  Aaron D. Ames,et al.  Rank properties of poincare maps for hybrid systems with applications to bipedal walking , 2010, HSCC '10.

[180]  Martin A. Giese,et al.  Joint torque analysis of push recovery motions during human walking , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[181]  Jonas Buchli,et al.  An efficient optimal planning and control framework for quadrupedal locomotion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[182]  A. Ruina,et al.  A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. , 2005, Journal of theoretical biology.

[183]  Susanne Still,et al.  Controller for a Four-Legged Walking Machine , 1998 .

[184]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[185]  E. Atzler,et al.  Arbeitsphysiologische Studien , 1927, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[186]  Full,et al.  Many-legged maneuverability: dynamics of turning in hexapods , 1999, The Journal of experimental biology.

[187]  Neville Hogan,et al.  Impedance control - An approach to manipulation. I - Theory. II - Implementation. III - Applications , 1985 .

[188]  Irraivan Elamvazuthi,et al.  Biomechanics of Hip, Knee and Ankle joint loading during ascent and descent walking , 2014 .

[189]  Christine Chevallereau,et al.  Achieving Bipedal Running with RABBIT: Six Steps Toward Infinity , 2006 .

[190]  Timothy Bretl,et al.  Control and Planning of 3-D Dynamic Walking With Asymptotically Stable Gait Primitives , 2012, IEEE Transactions on Robotics.

[191]  Oliver Rettig,et al.  Patient-specific bone geometry and segment inertia from MRI images for model-based analysis of pathological gait. , 2016, Journal of biomechanics.

[192]  Katja Mombaur,et al.  Inverse Optimal Control as a Tool to Understand Human Movement , 2017, Geometric and Numerical Foundations of Movements.

[193]  Aaron D. Ames,et al.  Dynamic multi-domain bipedal walking with atrias through SLIP based human-inspired control , 2014, HSCC.

[194]  Ruzena Bajcsy,et al.  Using Persistent Homology to Determine a Human-Data Based Cost for Bipedal Walking , 2011 .

[195]  Siavash Rezazadeh,et al.  Spring-Mass Walking With ATRIAS in 3D: Robust Gait Control Spanning Zero to 4.3 KPH on a Heavily Underactuated Bipedal Robot , 2015 .

[196]  Vinutha Kallem,et al.  Rate of change of angular momentum and balance maintenance of biped robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[197]  Matthew M. Williamson,et al.  Neural control of rhythmic arm movements , 1998, Neural Networks.

[198]  Kai Henning Koch,et al.  A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives , 2016, Robotics Auton. Syst..

[199]  Yuan F. Zheng,et al.  Trajectory generation for dynamic walking in a humanoid over uneven terrain using a 3D-actuated Dual-SLIP model , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[200]  J. Cabelguen,et al.  Fictive rhythmic motor patterns induced by NMDA in an in vitro brain stem-spinal cord preparation from an adult urodele. , 1999, Journal of neurophysiology.

[201]  Sushant Veer,et al.  Local input-to-state stability of dynamic walking under persistent external excitation using hybrid zero dynamics , 2016, 2016 American Control Conference (ACC).

[202]  Jan van Frankenhuyzen,et al.  Design and Evaluation of a Balance Assistance Control Moment Gyroscope , 2017 .

[203]  Jun Morimoto,et al.  Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[204]  A. Hof The 'extrapolated center of mass' concept suggests a simple control of balance in walking. , 2008, Human movement science.

[205]  Hiroshi Kimura,et al.  Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator , 1999, Auton. Robots.

[206]  Alan Bowling,et al.  Impact forces and agility in legged robot locomotion , 2011 .

[207]  M. MacKay-Lyons Central pattern generation of locomotion: a review of the evidence. , 2002, Physical therapy.

[208]  Masaki Ogino,et al.  Reinforcement learning of humanoid rhythmic walking parameters based on visual information , 2004, Adv. Robotics.

[209]  Rieko Osu,et al.  Endpoint Stiffness of the Arm Is Directionally Tuned to Instability in the Environment , 2007, The Journal of Neuroscience.

[210]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[211]  Nikolaos G. Tsagarakis,et al.  Walking in the resonance with the COMAN robot with trajectories based on human kinematic motion primitives (kMPs) , 2014, Auton. Robots.

[212]  Ian Stewart,et al.  A modular network for legged locomotion , 1998 .

[213]  A. Prochazka,et al.  Sensory systems in the control of movement. , 2012, Comprehensive Physiology.

[214]  Bin Li,et al.  3D Locomotion of a Snake-like Robot Controlled by Cyclic Inhibitory CPG Model , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[215]  Ambarish Goswami,et al.  Design of a Wearable Scissored-Pair Control Moment Gyroscope (SP-CMG) for Human Balance Assist , 2014 .

[216]  T. Andriacchi,et al.  A study of lower-limb mechanics during stair-climbing. , 1980, The Journal of bone and joint surgery. American volume.

[217]  Konrad Ahlin,et al.  Quiet (nearly collisionless) robotic walking , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[218]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[219]  Katja D. Mombaur,et al.  Influence of compliance modulation on human locomotion , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[220]  Aaron D. Ames,et al.  Algorithmic Foundations of Realizing Multi-Contact Locomotion on the Humanoid Robot DURUS , 2016, WAFR.

[221]  Y. Hurmuzlu,et al.  On the measurement of dynamic stability of human locomotion. , 1994, Journal of biomechanical engineering.

[222]  Scott Kuindersma,et al.  An efficiently solvable quadratic program for stabilizing dynamic locomotion , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[223]  Hae-Won Park,et al.  Quadrupedal galloping control for a wide range of speed via vertical impulse scaling. , 2015, Bioinspiration & biomimetics.

[224]  George A. Bekey,et al.  Genetic Algorithms for Gait Synthesis in a Hexapod Robot , 1994 .

[225]  Li Wang,et al.  Safety barrier certificates for heterogeneous multi-robot systems , 2016, 2016 American Control Conference (ACC).

[226]  Aaron D. Ames,et al.  Rank deficiency and superstability of hybrid systems , 2012 .

[227]  Stefan Schaal,et al.  Inverse dynamics control of floating base systems using orthogonal decomposition , 2010, 2010 IEEE International Conference on Robotics and Automation.

[228]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[229]  Auke Jan Ijspeert,et al.  Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[230]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[231]  K. Mombaur,et al.  Modeling and Optimal Control of Human-Like Running , 2010, IEEE/ASME Transactions on Mechatronics.

[232]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[233]  S Mintchev,et al.  A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers , 2012, Bioinspiration & biomimetics.

[234]  Koushil Sreenath,et al.  MABEL, a new robotic bipedal walker and runner , 2009, 2009 American Control Conference.

[235]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[236]  D. Owaki,et al.  Simple robot suggests physical interlimb communication is essential for quadruped walking , 2013, Journal of The Royal Society Interface.

[237]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[238]  Seungmoon Song,et al.  A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion , 2015, The Journal of physiology.

[239]  Rieko Osu,et al.  The central nervous system stabilizes unstable dynamics by learning optimal impedance , 2001, Nature.

[240]  Aaron D. Ames,et al.  Human‐inspired motion primitives and transitions for bipedal robotic locomotion in diverse terrain , 2014 .

[241]  David E. Orin,et al.  Generation of dynamic humanoid behaviors through task-space control with conic optimization , 2013, 2013 IEEE International Conference on Robotics and Automation.

[242]  Koushil Sreenath,et al.  Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics , 2014, IEEE Transactions on Automatic Control.

[243]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[244]  Sergiy Yakovenko,et al.  The neuromechanical tuning hypothesis. , 2007, Progress in brain research.

[245]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[246]  Juergen Rummel,et al.  Advanced Swing Leg Control for Stable Locomotion , 2007, AMS.

[247]  Pierre-Brice Wieber On the stability of walking systems , 2002 .

[248]  Richard W. Longman,et al.  Self-stabilizing somersaults , 2005, IEEE Transactions on Robotics.

[249]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[250]  R. Stein,et al.  Identification, Localization, and Modulation of Neural Networks for Walking in the Mudpuppy (Necturus Maculatus) Spinal Cord , 1998, The Journal of Neuroscience.

[251]  Pierre-Brice Wieber,et al.  Balancing a humanoid robot with a prioritized contact force distribution , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[252]  Aaron D. Ames,et al.  Multicontact Locomotion on Transfemoral Prostheses via Hybrid System Models and Optimization-Based Control , 2016, IEEE Transactions on Automation Science and Engineering.

[253]  Kai Henning Koch,et al.  Studying the Effect of Different Optimization Criteria on Humanoid Walking Motions , 2012, SIMPAR.

[254]  Koushil Sreenath,et al.  A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL , 2011, Int. J. Robotics Res..

[255]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[256]  Aaron D. Ames,et al.  A Human-Inspired Hybrid Control Approach to Bipedal Robotic Walking , 2011 .

[257]  Katja D. Mombaur,et al.  Using Spring-Damper Elements to Support Human-Like Push Recovery Motions , 2017, RAAD.

[258]  Russ Tedrake,et al.  Lyapunov analysis of rigid body systems with impacts and friction via sums-of-squares , 2013, HSCC '13.

[259]  M. Woollacott,et al.  Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity , 1998, Experimental Brain Research.

[260]  Oussama Khatib,et al.  A whole-body control framework for humanoids operating in human environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[261]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts , 2007, Int. J. Robotics Res..

[262]  Takashi Matsumoto,et al.  Real time motion generation and control for biped robot -2nd report: Running gait pattern generation- , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[263]  Andy Ruina,et al.  Discrete-Decision Continuous-Actuation Control: Balance of an Inverted Pendulum and Pumping a Pendulum Swing , 2015 .

[264]  P. Wallén,et al.  The neuronal correlate of locomotion in fish , 1980, Experimental Brain Research.

[265]  Bernard Espiau,et al.  Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws , 1997, Auton. Robots.

[266]  M. Coleman,et al.  An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .

[267]  C. Karen Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, SIGGRAPH 2010.

[268]  Friedrich Pfeiffer,et al.  A collocation method for real-time walking pattern generation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[269]  Amir Ali Ahmadi,et al.  Control design along trajectories with sums of squares programming , 2012, 2013 IEEE International Conference on Robotics and Automation.

[270]  G Schöner,et al.  A synergetic theory of quadrupedal gaits and gait transitions. , 1990, Journal of theoretical biology.

[271]  Olivier Stasse,et al.  COCoMoPL: A Novel Approach for Humanoid Walking Generation Combining Optimal Control, Movement Primitives and Learning and its Transfer to the Real Robot HRP-2 , 2017, IEEE Robotics and Automation Letters.

[272]  Koushil Sreenath,et al.  Safety-Critical Control for Dynamical Bipedal Walking with Precise Footstep Placement , 2015, ADHS.

[273]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[274]  Paulo Tabuada,et al.  Control barrier function based quadratic programs with application to adaptive cruise control , 2014, 53rd IEEE Conference on Decision and Control.

[275]  Bernard Espiau,et al.  A Study of the Passive Gait of a Compass-Like Biped Robot , 1998, Int. J. Robotics Res..

[276]  Sergey V. Drakunov,et al.  Capture Point: A Step toward Humanoid Push Recovery , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[277]  S. Grillner,et al.  Phasic gain control of the transmission in cutaneous reflex pathways to motoneurones during ‘fictive’ locomotion , 1978, Brain Research.

[278]  H. Cruse What mechanisms coordinate leg movement in walking arthropods? , 1990, Trends in Neurosciences.

[279]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models , 2011, Int. J. Robotics Res..

[280]  Arthur D Kuo,et al.  The relative roles of feedforward and feedback in the control of rhythmic movements. , 2002, Motor control.

[281]  Akio Ishiguro,et al.  A 2-D Passive-Dynamic-Running Biped With Elastic Elements , 2011, IEEE Transactions on Robotics.

[282]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[283]  Stefano Stramigioli,et al.  Control strategy for energy-efficient bipedal walking with variable leg stiffness , 2013, 2013 IEEE International Conference on Robotics and Automation.

[284]  Philip Holmes,et al.  Running in Three Dimensions: Analysis of a Point-mass Sprung-leg Model , 2005, Int. J. Robotics Res..

[285]  Katja Mombaur Performing Open-Loop Stable Flip-Flops — An Example for Stability Optimization and Robustness Analysis of Fast Periodic Motions , 2006 .

[286]  Auke Jan Ijspeert,et al.  Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization , 2008, Int. J. Robotics Res..

[287]  Aaron D. Ames,et al.  Human-Inspired Control of Bipedal Walking Robots , 2014, IEEE Transactions on Automatic Control.

[288]  Kazuo Tsuchiya,et al.  Adaptive gait pattern control of a quadruped locomotion robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[289]  Tamim Asfour,et al.  The KIT whole-body human motion database , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[290]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[291]  Yoshihiko Nakamura,et al.  Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[292]  Michael Ulbrich,et al.  Optimization Criteria for Human Trajectory Formation in Dynamic Virtual Environments , 2010, EuroHaptics.

[293]  Auke Jan Ijspeert,et al.  Robust and Agile 3D Biped Walking With Steering Capability Using a Footstep Predictive Approach , 2014, Robotics: Science and Systems.

[294]  Darwin G. Caldwell,et al.  Model-Based Hydraulic Impedance Control for Dynamic Robots , 2015 .

[295]  Anindya Chatterjee,et al.  Speed, efficiency, and stability of small-slope 2D passive dynamic bipedal walking , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[296]  Marion Sobotka,et al.  Optimal Control and Design of Bipedal Robots with ComplianceOptimale Steuerung und Auslegung zweibeiniger Laufroboter mit elastischen Gelenken , 2009, Autom..

[297]  Jean-Jacques E. Slotine,et al.  Models for Global Synchronization in CPG-based Locomotion , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[298]  S. Micera,et al.  An ecologically-controlled exoskeleton can improve balance recovery after slippage , 2017, Scientific Reports.

[299]  Katja Mombaur,et al.  Optimal Push Recovery for Periodic Walking Motions , 2016 .

[300]  V. Tucker Energetic cost of locomotion in animals. , 1970, Comparative biochemistry and physiology.

[301]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[302]  Li Wang,et al.  Multi-objective compositions for collision-free connectivity maintenance in teams of mobile robots , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[303]  Aaron D. Ames,et al.  Quadratic programming and impedance control for transfemoral prosthesis , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[304]  Martijn Wisse,et al.  A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm , 2007, IEEE Transactions on Robotics.

[305]  Edwin Dertien Dynamic walking with Dribbel , 2006 .

[306]  Aaron D. Ames,et al.  Towards the Unification of Locomotion and Manipulation through Control Lyapunov Functions and Quadratic Programs , 2013, CPSW@CISS.

[307]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[308]  Kenji KANEKO,et al.  Humanoid robot HRP-3 , 2004, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[309]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[310]  Shin Ishii,et al.  Reinforcement learning for a biped robot based on a CPG-actor-critic method , 2007, Neural Networks.

[311]  Aaron D. Ames,et al.  Multi-contact bipedal robotic locomotion , 2015, Robotica.

[312]  Aaron D. Ames,et al.  Dynamically stable bipedal robotic walking with NAO via human-inspired hybrid zero dynamics , 2012, HSCC '12.

[313]  Mako Popovic,et al.  Angular momentum primitives for human walking: biomechanics and control , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[314]  Katja D. Mombaur,et al.  An optimal control approach to reconstruct human gait dynamics from kinematic data , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[315]  Fumiya Iida,et al.  Energy-Efficient Monopod Running With a Large Payload Based on Open-Loop Parallel Elastic Actuation , 2017, IEEE Transactions on Robotics.

[316]  Martijn Wisse,et al.  The design of LEO: A 2D bipedal walking robot for online autonomous Reinforcement Learning , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[317]  Arend L. Schwab,et al.  Adding an Upper Body to Passive Dynamic Walking Robots by Means of a Bisecting Hip Mechanism , 2007, IEEE Transactions on Robotics.

[318]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[319]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[320]  Pranav A. Bhounsule Control of a compass gait walker based on energy regulation using ankle push-off and foot placement , 2015, Robotica.

[321]  Aaron D. Ames,et al.  A human-inspired framework for bipedal robotic walking design , 2014 .

[322]  Joohyung Kim,et al.  Development of the lower limbs for a humanoid robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[323]  Sergey Levine,et al.  Guided Policy Search , 2013, ICML.

[324]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[325]  F E Zajac,et al.  Human standing posture: multi-joint movement strategies based on biomechanical constraints. , 1993, Progress in brain research.

[326]  Jonathan B Dingwell,et al.  Dynamic margins of stability during human walking in destabilizing environments. , 2012, Journal of biomechanics.

[327]  Alin Albu-Schäffer,et al.  Walking control of fully actuated robots based on the Bipedal SLIP model , 2012, 2012 IEEE International Conference on Robotics and Automation.

[328]  Pierre-Brice Wieber,et al.  Author manuscript, published in "IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)" A sparse model predictive control formulation for walking motion generation , 2011 .

[329]  Auke Ijspeert,et al.  The contribution of a central pattern generator in a reflex-based neuromuscular model , 2014, Front. Hum. Neurosci..

[330]  Jun Morimoto,et al.  Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[331]  Timothy Bretl,et al.  Maximum entropy inverse reinforcement learning in continuous state spaces with path integrals , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[332]  Ambarish Goswami,et al.  Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[333]  Ferdinando Cannella,et al.  Design of HyQ – a hydraulically and electrically actuated quadruped robot , 2011 .

[334]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[335]  P. L. Weiss,et al.  Position dependence of ankle joint dynamics--I. Passive mechanics. , 1986, Journal of biomechanics.

[336]  Aaron D. Ames,et al.  Motion primitives for human-inspired bipedal robotic locomotion: walking and stair climbing , 2012, 2012 IEEE International Conference on Robotics and Automation.

[337]  Kiyotoshi Matsuoka,et al.  Mechanisms of frequency and pattern control in the neural rhythm generators , 1987, Biological Cybernetics.

[338]  Auke Jan Ijspeert,et al.  Modular control of limit cycle locomotion over unperceived rough terrain , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[339]  Aaron D. Ames,et al.  Simulating prosthetic devices with human-inspired hybrid control , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[340]  A. Hill The heat of shortening and the dynamic constants of muscle , 1938 .

[341]  M. Latash,et al.  Joint stiffness: Myth or reality? , 1993 .

[342]  Marko B. Popovic,et al.  Angular momentum in human walking , 2008, Journal of Experimental Biology.

[343]  Pierre-Brice Wieber,et al.  Fast Direct Multiple Shooting Algorithms for Optimal Robot Control , 2005 .

[344]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[345]  C. Pratt,et al.  Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input , 1979, Brain Research.

[346]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[347]  Aaron D. Ames,et al.  Bipedal Robotic Running with DURUS-2D: Bridging the Gap between Theory and Experiment , 2017, HSCC.

[348]  F. Horak Clinical measurement of postural control in adults. , 1987, Physical therapy.

[349]  Oussama Khatib,et al.  Muscle force transmission to operational space accelerations during elite golf swings , 2012, 2012 IEEE International Conference on Robotics and Automation.

[350]  Stephen P. DeWeerth,et al.  Sensory Feedback in a Half-Center Oscillator Model , 2007, IEEE Transactions on Biomedical Engineering.

[351]  R. Margaria Positive and negative work performances and their efficiencies in human locomotion , 1968, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[352]  R. McN. Alexander,et al.  Three Uses for Springs in Legged Locomotion , 1990, Int. J. Robotics Res..

[353]  K. Pearson Proprioceptive regulation of locomotion , 1995, Current Opinion in Neurobiology.

[354]  H. Forssberg Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. , 1979, Journal of neurophysiology.

[355]  Scott Kuindersma,et al.  A closed-form solution for real-time ZMP gait generation and feedback stabilization , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[356]  Katja Mombaur,et al.  Compliance analysis of human leg joints in level ground walking with an optimal control approach , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[357]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid , 2012, Int. J. Robotics Res..

[358]  Matthias Althoff,et al.  Reachability Analysis of Nonlinear Differential-Algebraic Systems , 2014, IEEE Transactions on Automatic Control.

[359]  Shuuji Kajita,et al.  Biped Walking Pattern Generator allowing Auxiliary ZMP Control , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[360]  Koushil Sreenath,et al.  Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion , 2016, 2016 American Control Conference (ACC).

[361]  Chandana Paul,et al.  Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge , 2014, Int. J. Robotics Res..

[362]  Ludovic Righetti,et al.  Pattern generators with sensory feedback for the control of quadruped locomotion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[363]  Tad McGeer,et al.  Passive Dynamic Biped Catalogue, 1991 , 1991, ISER.

[364]  C Maurer,et al.  A multisensory posture control model of human upright stance. , 2003, Progress in brain research.

[365]  Pierre-Brice Wieber,et al.  Hierarchical quadratic programming: Fast online humanoid-robot motion generation , 2014, Int. J. Robotics Res..

[366]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[367]  Aaron D. Ames,et al.  Bipedal robotic running with partial hybrid zero dynamics and human-inspired optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[368]  J. Nielsen,et al.  Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus) , 1998, Experimental Brain Research.

[369]  Tamar Flash,et al.  Motor primitives in vertebrates and invertebrates , 2005, Current Opinion in Neurobiology.

[370]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[371]  Weiwei Huang,et al.  3D walking based on online optimization , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[372]  S. Delp,et al.  Predicting the metabolic cost of incline walking from muscle activity and walking mechanics. , 2012, Journal of biomechanics.

[373]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[374]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[375]  Katja Mombaur,et al.  Modeling and optimal control of human platform diving with somersaults and twists , 2011, Optimization and Engineering.

[376]  Stephan Dempe,et al.  Necessary optimality conditions for bilevel set optimization problems , 2007, J. Glob. Optim..

[377]  Darwin G. Caldwell,et al.  Towards versatile legged robots through active impedance control , 2015, Int. J. Robotics Res..

[378]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[379]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[380]  Jonas Buchli,et al.  Unified motion control for dynamic quadrotor maneuvers demonstrated on slung load and rotor failure tasks , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[381]  Katja Mombaur,et al.  Analysis of human leg joints compliance in different walking scenarios with an optimal control approach , 2016 .

[382]  Marc Toussaint,et al.  Direct Loss Minimization Inverse Optimal Control , 2015, Robotics: Science and Systems.

[383]  Martin L. Felis RBDL: an efficient rigid-body dynamics library using recursive algorithms , 2017, Auton. Robots.

[384]  Koushil Sreenath,et al.  3D dynamic walking on stepping stones with control barrier functions , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[385]  Li-Shan Chou,et al.  Center of mass and base of support interaction during gait. , 2011, Gait & posture.

[386]  Michael A Sherman,et al.  WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES. , 2013, Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences.

[387]  M. Bobbert,et al.  How early reactions in the support limb contribute to balance recovery after tripping. , 2005, Journal of biomechanics.

[388]  Nikolaos G. Tsagarakis,et al.  Walking trajectory generation for humanoid robots with compliant joints: Experimentation with COMAN humanoid , 2012, 2012 IEEE International Conference on Robotics and Automation.

[389]  Li Wang,et al.  Control Barrier Certificates for Safe Swarm Behavior , 2015, ADHS.

[390]  A. Dollar,et al.  Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking , 2013, PloS one.

[391]  T. McGeer,et al.  Principles of Walking and Running , 1992 .

[392]  Simon M. Danner,et al.  Human spinal locomotor control is based on flexibly organized burst generators. , 2015, Brain : a journal of neurology.

[393]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[394]  Heike Vallery,et al.  Gyroscopic assistance for human balance , 2012, 2012 12th IEEE International Workshop on Advanced Motion Control (AMC).

[395]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[396]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[397]  A. Ruina,et al.  Multiple walking speed-frequency relations are predicted by constrained optimization. , 2001, Journal of theoretical biology.

[398]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance , 1998, Biological Cybernetics.

[399]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[400]  K. Mombaur,et al.  Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans. , 2015, Journal of biomechanics.

[401]  D. Winter,et al.  Balance recovery from medio-lateral perturbations of the upper body during standing , 1999 .

[402]  Darwin G. Caldwell,et al.  Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[403]  Christine Chevallereau,et al.  3D Bipedal Robotic Walking: Models, Feedback Control, and Open Problems , 2010 .

[404]  Ömer Morgül,et al.  An approximate stance map of the spring mass hopper with gravity correction for nonsymmetric locomotions , 2009, 2009 IEEE International Conference on Robotics and Automation.

[405]  Aaron D. Ames,et al.  Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[406]  Giulio Sandini,et al.  The iCub humanoid robot: An open-systems platform for research in cognitive development , 2010, Neural Networks.

[407]  Ulises Cortés,et al.  Weighting quantitative and qualitative variables in clustering methods , 1997 .

[408]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[409]  Tetsuya Asai,et al.  An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion , 2003, IEEE Trans. Neural Networks.

[410]  A. Ijspeert,et al.  Dynamic hebbian learning in adaptive frequency oscillators , 2006 .

[411]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[412]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[413]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[414]  Katja Mombaur,et al.  Forward and Inverse Optimal Control of Bipedal Running , 2013 .

[415]  Riadh Zaier,et al.  Motion Pattern Generator and Reflex System for Humanoid Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[416]  Ken Endo,et al.  A quasi-passive model of human leg function in level-ground walking , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[417]  S. Shankar Sastry,et al.  Dimension reduction near periodic orbits of hybrid systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[418]  Arend L. Schwab,et al.  Basin of Attraction of the Simplest Walking Model , 2001 .

[419]  Aaron Hertzmann,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, SIGGRAPH 2010.

[420]  Paolo Arena,et al.  The Central Pattern Generator: a paradigm for artificial locomotion , 2000, Soft Comput..

[421]  Eiichi Yoshida,et al.  Automatic locomotion pattern generation for modular robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[422]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[423]  Stefan Schaal,et al.  Learning Control in Robotics , 2010, IEEE Robotics & Automation Magazine.

[424]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[425]  Hartmut Geyer,et al.  A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[426]  Vincent De Sapio,et al.  Robotics-based synthesis of human motion , 2009, Journal of Physiology-Paris.

[427]  Ioannis Poulakakis,et al.  Formal embedding of the Spring Loaded Inverted Pendulum in an Asymmetric hopper , 2007, 2007 European Control Conference (ECC).

[428]  Christopher G. Atkeson,et al.  Trajectory-Based Dynamic Programming , 2013 .

[429]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[430]  Natasha Loder,et al.  Journal under attack over controversial paper on GM food , 1999, Nature.

[431]  Daniel P. Ferris,et al.  Running in the real world: adjusting leg stiffness for different surfaces , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[432]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[433]  Thomas Mergner,et al.  Modeling sensorimotor control of human upright stance. , 2007, Progress in brain research.

[434]  D. E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1987 .